Abstract
At ICALP 2018, Boyle et al. introduced the notion of the bottleneck complexity of a secure multi-party computation (MPC) protocol. This measures the maximum communication complexity of any one party in the protocol, aiming to improve load-balancing among the parties.
In this work, we study the bottleneck complexity of MPC in the preprocessing model, where parties are given correlated randomness ahead of time. We present two constructions of bottleneck-efficient MPC protocols, whose bottleneck complexity is independent of the number of parties:
-
1.
A protocol for computing abelian programs, based only on one-way functions.
-
2.
A protocol for selection functions, based on any linearly homomorphic encryption scheme.
Compared with previous bottleneck-efficient constructions, our protocols can be based on a wider range of assumptions, and avoid the use of fully homomorphic encryption.
Research supported by: the Concordium Blockhain Research Center, Aarhus University, Denmark; the Carlsberg Foundation under the Semper Ardens Research Project CF18-112 (BCM); the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096 (SPEC); the Aarhus University Research Foundation (AUFF); the Independent Research Fund Denmark (DFF) under project number 0165-00107B; the Digital Research Centre Denmark (DIREC);.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
However, this approach suffices for residual security, as shown in the NIMPC protocol of [HIKR18].
References
Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE combiners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 199–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_9
Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29
Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_22
Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_21
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988
Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press, October 2012
Boyle, E., Jain, A., Prabhakaran, M., Yu, C.-H.: The bottleneck complexity of secure multiparty computation. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) ICALP 2018, LIPIcs, vol. 107, pp. 24:1–24:16. Schloss Dagstuhl, July 2018
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer Society Press, October 2011
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988
Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_19
Couteau, G.: A note on the communication complexity of multiparty computation in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_17
Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_4
Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_30
Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multiparty computation with nearly optimal work and resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_14
Damgård, I., Nielsen, J.B., Polychroniadou, A., Raskin, M.: On the communication required for unconditionally secure multiplication. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 459–488. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_16
Eriguchi, R., Ohara, K., Yamada, S., Nuida, K.: Non-interactive secure multiparty computation for symmetric functions, revisited: more efficient constructions and extensions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 305–334. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_11
Fernando, R., Komargodski, I., Liu, Y., Shi, E.: Secure Massively parallel computation for dishonest majority. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 379–409. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_14
Gordon, S.D., Malkin, T., Rosulek, M., Wee, H.: Multi-party computation of polynomials and branching programs without simultaneous interaction. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 575–591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_34
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987
Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty computation with general interaction patterns. In: Sudan, M. (ed.) ITCS 2016, pp. 157–168. ACM, January 2016
Halevi, S., Ishai, Y., Kushilevitz, E., Rabin, T.: Best possible information-theoretic MPC. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 255–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_10
Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_8
Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_34
Ishai, Y., Mittal, M., Ostrovsky, R.: On the message complexity of secure multiparty computation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 698–711. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_24
Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_31
Lindell, Y., Nissim, K., Orlandi, C.: Hiding the input-size in secure two-party computation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 421–440. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_22
Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: 33rd ACM STOC, pp. 590–599. ACM Press, July 2001
Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In: Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press, October 2018
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005
Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982
Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Orlandi, C., Ravi, D., Scholl, P. (2022). On the Bottleneck Complexity of MPC with Correlated Randomness. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13177. Springer, Cham. https://doi.org/10.1007/978-3-030-97121-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-97121-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97120-5
Online ISBN: 978-3-030-97121-2
eBook Packages: Computer ScienceComputer Science (R0)