Skip to main content

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2022 (PKC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13177))

Included in the following conference series:

Abstract

The SPDZ protocol for multi-party computation relies on a correlated randomness setup consisting of authenticated, multiplication triples. A recent line of work by Boyle et al. (Crypto 2019, Crypto 2020) has investigated the possibility of producing this correlated randomness in a silent preprocessing phase, which involves a “small” setup protocol with less communication than the total size of the triples being produced. These works do this using a tool called a pseudorandom correlation generator (PCG), which allows a large batch of correlated randomness to be compressed into a set of smaller, correlated seeds. However, existing methods for compressing SPDZ triples only apply to the 2-party setting.

In this work, we construct a PCG for producing SPDZ triples over large prime fields in the multi-party setting. The security of our PCG is based on the ring-LPN assumption over fields, similar to the work of Boyle et al. (Crypto 2020) in the 2-party setting. We also present a corresponding, actively secure setup protocol, which can be used to generate the PCG seeds and instantiate SPDZ with a silent preprocessing phase. As a building block, which may be of independent interest, we construct a new type of 3-party distributed point function supporting outputs over arbitrary groups (including large prime order), as well as an efficient protocol for setting up our DPF keys with active security.

Supported by the Aarhus University Research Foundation and Independent Research Fund Denmark (DFF) under project number 0165-00107B (C3PO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the 2-party setting, there are efficient DPFs with logarithmic key size [BGI15, BGI16].

  2. 2.

    Tuples \(\bigl ((X_0, X_1), (b, X_b)\bigr )\) where \(X_0, X_1\overset{\$}{\leftarrow }\{0, 1\}^\lambda \) and \(b\overset{\$}{\leftarrow }\{0, 1\}\).

  3. 3.

    The protocol is more efficient when m is divisible by a power of 2.

  4. 4.

    Whether we need to add or subtract is specified by the sign multipliers \(u_i^b\).

  5. 5.

    The shares are elements of R and therefore polynomials.

References

  1. Abram, D., Scholl, P.: Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN. Cryptology ePrint Archive, 2021 (2021)

    Google Scholar 

  2. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: ACM CCS 2019. ACM Press, November 2019

    Google Scholar 

  3. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  4. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14

    Chapter  Google Scholar 

  5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  6. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12

    Chapter  Google Scholar 

  7. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: ACM CCS 2016. ACM Press, October 2016

    Google Scholar 

  8. Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party distributed ORAM. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 215–232. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_11

    Chapter  Google Scholar 

  9. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

    Chapter  Google Scholar 

  10. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  11. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35

    Chapter  Google Scholar 

  12. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: ACM CCS 2016. ACM Press, October 2016

    Google Scholar 

  13. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6

    Chapter  Google Scholar 

  14. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40

    Chapter  Google Scholar 

  15. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptogr. 71(1), 57–81 (2014)

    Article  Google Scholar 

  16. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for correlated OT with small communication. In: ACM CCS 20. ACM Press, November 2020

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their feedback, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Abram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abram, D., Scholl, P. (2022). Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13177. Springer, Cham. https://doi.org/10.1007/978-3-030-97121-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97121-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97120-5

  • Online ISBN: 978-3-030-97121-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics