Abstract
The SPDZ protocol for multi-party computation relies on a correlated randomness setup consisting of authenticated, multiplication triples. A recent line of work by Boyle et al. (Crypto 2019, Crypto 2020) has investigated the possibility of producing this correlated randomness in a silent preprocessing phase, which involves a “small” setup protocol with less communication than the total size of the triples being produced. These works do this using a tool called a pseudorandom correlation generator (PCG), which allows a large batch of correlated randomness to be compressed into a set of smaller, correlated seeds. However, existing methods for compressing SPDZ triples only apply to the 2-party setting.
In this work, we construct a PCG for producing SPDZ triples over large prime fields in the multi-party setting. The security of our PCG is based on the ring-LPN assumption over fields, similar to the work of Boyle et al. (Crypto 2020) in the 2-party setting. We also present a corresponding, actively secure setup protocol, which can be used to generate the PCG seeds and instantiate SPDZ with a silent preprocessing phase. As a building block, which may be of independent interest, we construct a new type of 3-party distributed point function supporting outputs over arbitrary groups (including large prime order), as well as an efficient protocol for setting up our DPF keys with active security.
Supported by the Aarhus University Research Foundation and Independent Research Fund Denmark (DFF) under project number 0165-00107B (C3PO).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Tuples \(\bigl ((X_0, X_1), (b, X_b)\bigr )\) where \(X_0, X_1\overset{\$}{\leftarrow }\{0, 1\}^\lambda \) and \(b\overset{\$}{\leftarrow }\{0, 1\}\).
- 3.
The protocol is more efficient when m is divisible by a power of 2.
- 4.
Whether we need to add or subtract is specified by the sign multipliers \(u_i^b\).
- 5.
The shares are elements of R and therefore polynomials.
References
Abram, D., Scholl, P.: Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN. Cryptology ePrint Archive, 2021 (2021)
Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: ACM CCS 2019. ACM Press, November 2019
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14
Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: ACM CCS 2016. ACM Press, October 2016
Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party distributed ORAM. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 215–232. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_11
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35
Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: ACM CCS 2016. ACM Press, October 2016
Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6
Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40
Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptogr. 71(1), 57–81 (2014)
Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for correlated OT with small communication. In: ACM CCS 20. ACM Press, November 2020
Acknowledgements
We thank the anonymous reviewers for their feedback, which helped to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Abram, D., Scholl, P. (2022). Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13177. Springer, Cham. https://doi.org/10.1007/978-3-030-97121-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-97121-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97120-5
Online ISBN: 978-3-030-97121-2
eBook Packages: Computer ScienceComputer Science (R0)