Skip to main content

Lattice-Based Signatures with Tight Adaptive Corruptions and More

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2022 (PKC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13178))

Included in the following conference series:

  • 1085 Accesses

Abstract

We construct the first tightly secure signature schemes in the multi-user setting with adaptive corruptions from lattices. In stark contrast to the previous tight constructions whose security is solely based on number-theoretic assumptions, our schemes are based on the Learning with Errors (LWE) assumption which is supposed to be post-quantum secure. The security of our scheme is independent of the numbers of users and signing queries, and it is in the non-programmable random oracle model. Our LWE-based scheme is compact, namely, its signatures contain only a constant number of lattice vectors.

At the core of our construction are a new abstraction of the existing lossy identification (ID) schemes using dual-mode commitment schemes and a refinement of the framework by Diemert et al. (PKC 2021) which transforms a lossy ID scheme to a signature using sequential OR proofs. In combination, we obtain a tight generic construction of signatures from dual-mode commitments in the multi-user setting. Improving the work of Diemert et al., our new approach can be instantiated using not only the LWE assumption, but also an isogeny-based assumption. We stress that our LWE-based lossy ID scheme in the intermediate step uses a conceptually different idea than the previous lattice-based ones.

Of independent interest, we formally rule out the possibility that the aforementioned “ID-to-Signature” methodology can work tightly using parallel OR proofs. In addition to the results of Fischlin et al. (EUROCRYPT 2020), our impossibility result shows a qualitative difference between both forms of OR proofs in terms of tightness.

J. Pan—Supported by the Research Council of Norway under Project No. 324235.

B. Wagner—This work was done while the second author was a student at Karlsruhe Institute of Technology (Germany) and was doing an internship with the first author at NTNU (Norway).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A trivial solution to argue lossiness with plain \(\mathsf {LWE}\) is to have an ID scheme with single bit challenges, but that will result in a non-compact scheme with linear-size signatures, since for such an ID scheme we need to repeat \(O(\lambda )\) times to get soundness (where \(\lambda \) is the security parameter).

  2. 2.

    For the exact statements we use, we refer to the full version of our paper.

References

  1. Abdalla, M., Benhamouda, F., Pointcheval, D.: On the tightness of forward-secure signature reductions. J. Cryptol. 32(1), 84–150 (2019)

    Article  MathSciNet  Google Scholar 

  2. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_34

    Chapter  Google Scholar 

  3. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_34

    Chapter  Google Scholar 

  4. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_26

    Chapter  Google Scholar 

  5. Bader, C.: Efficient signatures with tight real world security in the random-oracle model. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 370–383. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12280-9_24

    Chapter  Google Scholar 

  6. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_26

    Chapter  Google Scholar 

  7. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_10

    Chapter  Google Scholar 

  8. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18

    Chapter  MATH  Google Scholar 

  9. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof and improved concrete security for waters’ IBE scheme. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_24

    Chapter  Google Scholar 

  10. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  11. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from Chameleon Hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_12

    Chapter  Google Scholar 

  12. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_14

    Chapter  Google Scholar 

  13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press (June 2013)

    Google Scholar 

  14. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7

    Chapter  Google Scholar 

  16. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

    Chapter  Google Scholar 

  17. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_18

    Chapter  Google Scholar 

  18. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  19. Damgård, I.: On \(\Sigma \)-protocols (2010). https://cs.au.dk/ivan/Sigma.pdf

  20. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. In: ACNS 2021 (2021). https://eprint.iacr.org/2020/1029

  21. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with tight multi-user security. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 1–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_1

    Chapter  Google Scholar 

  22. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically-sound cryptographic parameters for real-world deployments. J. Cryptol. 34, 1–57 (2020). https://eprint.iacr.org/2020/726

  23. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  24. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: efficient signature scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 157–186. Springer, Heidelberg (May (2020)

    Google Scholar 

  25. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 212–244. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_8

    Chapter  Google Scholar 

  26. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_8

    Chapter  Google Scholar 

  27. Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete Gaussian and Subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 623–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_21

    Chapter  Google Scholar 

  28. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2007). https://eprint.iacr.org/2007/432

  29. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press (May 2008)

    Google Scholar 

  30. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  31. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_4

    Chapter  Google Scholar 

  32. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MathSciNet  Google Scholar 

  33. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 469–477. ACM Press (June 2015)

    Google Scholar 

  34. Guillou, L.C., Quisquater, J.-J.: A “Paradoxical’’ indentity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_16

    Chapter  Google Scholar 

  35. Han, S., et al.: Authenticated key exchange and signatures with tight security in the standard model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 670–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_23

    Chapter  Google Scholar 

  36. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. ISC. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14303-8

  37. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 66–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_5

    Chapter  Google Scholar 

  38. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 117–146. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_5

    Chapter  Google Scholar 

  39. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 537–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_32

    Chapter  Google Scholar 

  40. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_18

    Chapter  MATH  Google Scholar 

  41. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_2

    Chapter  Google Scholar 

  42. Langrehr, R., Pan, J.: Tightly secure hierarchical identity-based encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 436–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_15

    Chapter  Google Scholar 

  43. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 785–814. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_27

    Chapter  Google Scholar 

  44. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  45. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. J. Cryptol. 31(3), 774–797 (2018)

    Article  MathSciNet  Google Scholar 

  46. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  47. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  48. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press (October 2004)

    Google Scholar 

  49. Pan, J., Ringerud, M.: Signatures with tight multi-user security from search assumptions. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 485–504. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_24

    Chapter  Google Scholar 

  50. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press (May/June 2009)

    Google Scholar 

  51. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31

    Chapter  Google Scholar 

  52. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (May 2005)

    Google Scholar 

  53. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_23

    Chapter  Google Scholar 

  54. Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis, Norwegian University of Science and Technology (2012)

    Google Scholar 

  55. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxin Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J., Wagner, B. (2022). Lattice-Based Signatures with Tight Adaptive Corruptions and More. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13178. Springer, Cham. https://doi.org/10.1007/978-3-030-97131-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97131-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97130-4

  • Online ISBN: 978-3-030-97131-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics