Skip to main content

Post-quantum Anonymous One-Sided Authenticated Key Exchange Without Random Oracles

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2022 (PKC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13178))

Included in the following conference series:

Abstract

Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalla, M., Izabachène, M., Pointcheval, D.: Anonymous and transparent gateway-based password-authenticated key exchange. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 133–148. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89641-8_10

    Chapter  Google Scholar 

  2. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14

    Chapter  Google Scholar 

  3. Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Anonymous authentication with shared secrets. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 219–236. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9_12

    Chapter  Google Scholar 

  4. Avanzi, R.M.: The complexity of certain multi-exponentiation techniques in cryptography. J. Cryptol. 18(4), 357–373 (2005). https://doi.org/10.1007/s00145-004-0229-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. NIST Post-Quantum Cryptography Standardization (2020)

    Google Scholar 

  6. Backes, M., Kate, A., Mohammadi, E.: Ace: an efficient key-exchange protocol for onion routing. In: 11th ACM WPES, pp. 55–64 (2012)

    Google Scholar 

  7. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle methodology, revisited. J. ACM 51, 557–594 (2004)

    Article  MathSciNet  Google Scholar 

  8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  9. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

    Chapter  Google Scholar 

  10. Chow, S.S.M., Choo, K.-K.R.: Strongly-secure identity-based key agreement and anonymous extension. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 203–220. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1_14

    Chapter  Google Scholar 

  11. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33, 167–226 (2003)

    Article  MathSciNet  Google Scholar 

  12. Dagdelen, Ö., Fischlin, M., Gagliardoni, T., Marson, G.A., Mittelbach, A., Onete, C.: A cryptographic analysis of OPACITY. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 345–362. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_20

    Chapter  Google Scholar 

  13. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically sound cryptographic parameters for real-world deployments. J. Cryptol. 34(3), 1–57 (2021). https://doi.org/10.1007/s00145-021-09388-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. In: 13th USENIX Security Symposium, pp. 303–320 (2004)

    Google Scholar 

  15. Dodis, Y., Fiore, D.: Unilaterally-authenticated key exchange. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 542–560. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_31

    Chapter  Google Scholar 

  16. Fouotsa, T.B., Petit, C.: SimS: a simplification of SiGamal. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 277–295. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_15

    Chapter  Google Scholar 

  17. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum authenticated key exchange from one-way secure key encapsulation mechanism. In: AsiaCCS 2013, pp. 83–94 (2013)

    Google Scholar 

  18. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange from factoring, codes, and lattices. Des. Codes Crypt. 76(3), 469–504 (2015). https://doi.org/10.1007/s10623-014-9972-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Fujioka, A., Takashima, K., Terada, S., Yoneyama, K.: Supersingular isogeny Diffie–Hellman authenticated key exchange. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 177–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_12

    Chapter  Google Scholar 

  20. Fujioka, A., Takashima, K., Yoneyama, K.: One-round authenticated group key exchange from isogenies. In: Steinfeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS, vol. 11821, pp. 330–338. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31919-9_20

    Chapter  Google Scholar 

  21. Galbraith, S.D.: Authenticated key exchange for SIDH. IACR Cryptology ePrint Archive, Report 2018/266 (2018)

    Google Scholar 

  22. Ghosh, S., Kate, A.: Post-quantum forward-secure onion routing. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 263–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_13

    Chapter  Google Scholar 

  23. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In: ACM CCS 2013, pp. 387–398 (2013)

    Google Scholar 

  24. Goldberg, I., Stebila, D., Ustaoglu, B.: Anonymity and one-way authentication in key exchange protocols. Des. Codes Cryptogr. 67, 245–269 (2013). https://doi.org/10.1007/s10623-011-9604-z

  25. de Saint Guilhem, C., Smart, N.P., Warinschi, B.: Generic forward-secure key agreement without signatures. In: Nguyen, P., Zhou, J. (eds.) Information Security, ISC 2017. LNCS, vol. 10599, pp. 114–133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69659-1_7

  26. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  MATH  Google Scholar 

  27. Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authenticated key exchange from random self-reducibility on CSIDH. In: Hong, D. (ed.) ICISC 2020. LNCS, vol. 12593, pp. 58–84. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68890-5_4

    Chapter  Google Scholar 

  28. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 451–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_18

    Chapter  Google Scholar 

  29. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA in the standard model. IACR Cryptology ePrint Archive, Report 2013/367 (2013)

    Google Scholar 

  30. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33

    Chapter  Google Scholar 

  31. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_24

    Chapter  Google Scholar 

  32. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: EuroS&P 2016, pp. 81–96 (2016)

    Google Scholar 

  33. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: an efficient communication system with strong anonymity. In: 16th PETS, pp. 115–134 (2016)

    Google Scholar 

  34. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_1

    Chapter  MATH  Google Scholar 

  35. Lee, M.-F., Smart, N.P., Warinschi, B., Watson, G.J.: Anonymity guarantees of the UMTS/LTE authentication and connection protocol. Int. J. Inf. Secur. 13(6), 513–527 (2014). https://doi.org/10.1007/s10207-014-0231-3

    Article  Google Scholar 

  36. Longa, P.: A note on post-quantum authenticated key exchange from supersingular isogenies. IACR Cryptology ePrint Archive, Report 2018/267 (2018)

    Google Scholar 

  37. Moriya, T., Onuki, H., Takagi, T.: SiGamal: a supersingular isogeny-based PKE and its application to a PRF. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 551–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_19

    Chapter  Google Scholar 

  38. Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the TLS handshake protocol. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 55–73. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_5

    Chapter  Google Scholar 

  39. M’Raíhi, D., Naccache, D.: Batch exponentiation: a fast DLP-based signature generation strategy. In: ACM CCS 1996, pp. 58–61 (1996)

    Google Scholar 

  40. Shoup, V.: A proposal for an ISO standard for public key encryption. IACR Cryptology ePrint Archive, Report 2001/112 (2001)

    Google Scholar 

  41. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology ePrint Archive, Report 2004/332 (2004)

    Google Scholar 

  42. Walker, J., Li, J.: Key exchange with anonymous authentication using DAA-SIGMA protocol. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS, vol. 6802, pp. 108–127. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25283-9_8

    Chapter  Google Scholar 

  43. Xu, X., Xue, H., Wang, K., Au, M.H., Tian, S.: Strongly secure authenticated key exchange from supersingular isogenies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 278–308. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_11

    Chapter  Google Scholar 

  44. Yang, X., Jiang, H., Hou, M., Zheng, Z., Xu, Q., Choo, K.-K.R.: A provably-secure two-factor authenticated key exchange protocol with stronger anonymity. In: Au, M.H., et al. (eds.) NSS 2018. LNCS, vol. 11058, pp. 111–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02744-5_8

    Chapter  Google Scholar 

  45. Yoneyama, K.: One-round authenticated key exchange with strong forward secrecy in the standard model against constrained adversary. In: Hanaoka, G., Yamauchi, T. (eds.) IWSEC 2012. LNCS, vol. 7631, pp. 69–86. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34117-5_5

    Chapter  MATH  Google Scholar 

  46. Yoneyama, K.: Post-quantum variants of ISO/IEC standards: compact chosen ciphertext secure key encapsulation mechanism from isogenies. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 104–A, 69–78 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Ishibashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishibashi, R., Yoneyama, K. (2022). Post-quantum Anonymous One-Sided Authenticated Key Exchange Without Random Oracles. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13178. Springer, Cham. https://doi.org/10.1007/978-3-030-97131-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97131-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97130-4

  • Online ISBN: 978-3-030-97131-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics