Skip to main content

Lockable Obfuscation from Circularly Insecure Fully Homomorphic Encryption

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2022 (PKC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13178))

Included in the following conference series:

Abstract

In a lockable obfuscation scheme, a party called the obfuscator takes as input a circuit \(C\), a lock value y, and a message m, and outputs an obfuscated circuit. Given the obfuscated circuit, an evaluator can run it on an input x and learn the message if \(C(x) = y\). For security, we require that the obfuscation reveals no information on the circuit as long as the lock y has high entropy even given the circuit \(C\).

The only known constructions of lockable obfuscation schemes require indistinguishability obfuscation (\(i\mathcal {O}\)) or the learning with errors (LWE) assumption. Furthermore, in terms of technique, all known constructions, excluding \(i\mathcal {O}\)-based, are build from provably secure variations of graph-induced multilinear maps.

We show a generic construction of a lockable obfuscation scheme built from a (leveled) fully homomorphic encryption scheme that is circularly insecure. Specifically, we need a fully homomorphic encryption scheme that is secure under chosen-plaintext attack (IND-CPA) but for which there is an efficient cycle tester that can detect encrypted key cycles. Our finding sheds new light on how to construct lockable obfuscation schemes and shows why cycle tester constructions were helpful in the design of lockable obfuscation schemes. One of the many use cases for lockable obfuscation schemes are constructions for IND-CPA secure but circularly insecure encryption schemes. Our work shows that there is a connection in both ways between circular insecure encryption and lockable obfuscation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The folklore counterexample for 1-cycles is an augmented construction of any \(\mathsf {IND}\text {-}\mathsf {CPA}\) secure encryption. In short, we append \(y \leftarrow F(\mathsf {sk})\) to the public key, where F is a one-way function. Encryption of a message m is as in the original encryption scheme, except we return m if \(F(m) = y\).

  2. 2.

    Specifically, Wichs and Zirdelis show a lockable obfuscator from null-\(i\mathcal {O}\), that is, \(i\mathcal {O}\) for evasive functions. However, the only known realization requires lockable obfuscation and witness encryption which we know how to build from \(i\mathcal {O}\) or multilinear maps that imply \(i\mathcal {O}\).

  3. 3.

    As pointed by Kluczniak [Klu20], the definition by Bishop, Hohenberger, and Waters [BHW15] does not make a distinction between a cycle tester and an encryption scheme with an efficient zero tester.

References

  1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_21

    Chapter  Google Scholar 

  2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_6

    Chapter  MATH  Google Scholar 

  3. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new methods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_7

    Chapter  Google Scholar 

  4. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28

    Chapter  MATH  Google Scholar 

  5. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_10

    Chapter  Google Scholar 

  6. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4

    Chapter  Google Scholar 

  7. Ananth, P., La Placa, R.L.: Secure quantum extraction protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 123–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_5

    Chapter  Google Scholar 

  8. Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity for any cycle length from (ring-)LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 659–680. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_23

    Chapter  Google Scholar 

  9. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_4

    Chapter  Google Scholar 

  10. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not necessary for iO: circular-secure LWE suffices. Cryptology ePrint Archive, Report 2020/1024 (2020). https://eprint.iacr.org/2020/1024

  11. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_1

    Chapter  Google Scholar 

  12. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  13. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 1–48 (2012)

    Article  MathSciNet  Google Scholar 

  14. Barak, B., Hopkins, S.B., Jain, A., Kothari, P., Sahai, A.: Sum-of-squares meets program obfuscation, revisited. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 226–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_8

    Chapter  Google Scholar 

  15. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples from decision linear and learning with errors. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 776–800. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_32

    Chapter  Google Scholar 

  16. Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A simple obfuscation scheme for pattern-matching with wildcards. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018. Part III, volume 10993 of Lecture Notes in Computer Science, pp. 731–752. Springer, Heidelberg (2018)

    Chapter  Google Scholar 

  17. Bitansky, N., Khurana, D., Paneth, O.: Weak zero-knowledge beyond the black-box barrier. In: Charikar, M., Cohen, E. (eds.) 51st Annual ACM Symposium on Theory of Computing, pp. 1091–1102. ACM Press, June 2019

    Google Scholar 

  18. Badrinarayanan, S., Khurana, D., Sahai, A., Waters, B.: Upgrading to functional encryption. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 629–658. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_23

    Chapter  Google Scholar 

  19. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for obfuscating conjunctions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 636–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_22

    Chapter  Google Scholar 

  20. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20

    Chapter  Google Scholar 

  21. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 416–434. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_24

    Chapter  Google Scholar 

  22. Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 565–594. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_21

    Chapter  Google Scholar 

  23. Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant rounds. In: Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.) 52nd Annual ACM Symposium on Theory of Computing, pp. 269–279. ACM Press, June 2020

    Google Scholar 

  24. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions under entropic ring LWE. In: Sudan, M. (ed.) ITCS 2016: 7th Conference on Innovations in Theoretical Computer Science, pp. 147–156. Association for Computing Machinery, January 2016

    Google Scholar 

  25. Beullens, W., Wee, H.: Obfuscating simple functionalities from knowledge assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 254–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_9

    Chapter  Google Scholar 

  26. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

    Chapter  Google Scholar 

  27. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_28

    Chapter  Google Scholar 

  28. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 540–557. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_32

    Chapter  Google Scholar 

  29. Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On symmetric encryption and point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 52–71. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_4

    Chapter  Google Scholar 

  30. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_5

    Chapter  MATH  Google Scholar 

  31. Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-tracing from LWE made simple and attribute-based. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 341–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_13

    Chapter  Google Scholar 

  32. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_20

    Chapter  Google Scholar 

  33. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_22

    Chapter  Google Scholar 

  34. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_35

    Chapter  MATH  Google Scholar 

  35. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 621–630. ACM Press, May/June 2009

    Google Scholar 

  36. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  Google Scholar 

  37. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual Symposium on Foundations of Computer Science, pp. 293–302. IEEE Computer Society Press, October 2008

    Google Scholar 

  38. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  39. Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory of Computing, pp. 654–663. ACM Press, May 2005

    Google Scholar 

  40. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM Press, May/June 2009

    Google Scholar 

  41. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_20

    Chapter  Google Scholar 

  42. Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-to-state hard problems: new assumptions, new techniques, and simplification. Cryptology ePrint Archive, Report 2020/764 (2020). https://eprint.iacr.org/2020/764

  43. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: Yao, A.C.-C. (ed.) Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, 5–7 January 2010. Proceedings, pp. 230–240. Tsinghua University Press (2010)

    Google Scholar 

  44. Goyal, R., Koppula, V., Vusirikala, S., Waters, B.: On perfect correctness in (lockable) obfuscation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 229–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_9

    Chapter  Google Scholar 

  45. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Umans, C. (ed.) 58th Annual Symposium on Foundations of Computer Science, pp. 612–621. IEEE Computer Society Press, October 2017

    Google Scholar 

  46. Goyal, R., Koppula, V., Waters, B.: Separating IND-CPA and circular security for unbounded length key cycles. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 232–246. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_10

    Chapter  MATH  Google Scholar 

  47. Goyal, R., Koppula, V., Waters, B.: Separating semantic and circular security for symmetric-key bit encryption from the learning with errors assumption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 528–557. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_18

    Chapter  Google Scholar 

  48. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning with errors. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th Annual ACM Symposium on Theory of Computing, pp. 660–670. ACM Press, June 2018

    Google Scholar 

  49. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. Cryptology ePrint Archive, Report 2020/1010 (2020). https://eprint.iacr.org/2020/1010

  50. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_6

    Chapter  Google Scholar 

  51. Haitner, I., Holenstein, T.: On the (Im)possibility of key dependent encryption. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_13

    Chapter  MATH  Google Scholar 

  52. HÅstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Google Scholar 

  53. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_10

    Chapter  Google Scholar 

  54. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  55. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree expanding polynomials over \(\mathbb{R}\) to build \(i\cal{O}\). In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_9

    Chapter  Google Scholar 

  56. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020). https://eprint.iacr.org/2020/1003

  57. Kluczniak, K.: Witness encryption from garbled circuit and multikey fully homomorphic encryption techniques. Cryptology ePrint Archive, Report 2020/1502 (2020). https://eprint.iacr.org/2020/1502

  58. Kluczniak, K.: Lockable obfuscation from circularly insecure fully homomorphic encryption. Cryptology ePrint Archive, Report 2021/1324 (2021). https://ia.cr/2021/1324

  59. Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 378–400. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_15

    Chapter  Google Scholar 

  60. Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles from LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 681–700. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_24

    Chapter  Google Scholar 

  61. Komargodski, I., Yogev, E.: Another step towards realizing random oracles: non-malleable point obfuscation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 259–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_10

    Chapter  Google Scholar 

  62. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  63. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_2

    Chapter  Google Scholar 

  64. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_17

    Chapter  Google Scholar 

  65. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_21

    Chapter  Google Scholar 

  66. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_2

    Chapter  Google Scholar 

  67. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_27

    Chapter  Google Scholar 

  68. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  69. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory of Computing, pp. 84–93. ACM Press, May 2005

    Google Scholar 

  70. Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_32

    Chapter  MATH  Google Scholar 

  71. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory of Computing, pp. 523–532. ACM Press, May 2005

    Google Scholar 

  72. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. Cryptology ePrint Archive, Report 2020/1042 (2020). https://eprint.iacr.org/2020/1042

  73. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: Umans, C. (ed.) 58th Annual Symposium on Foundations of Computer Science, pp. 600–611. IEEE Computer Society Press, October 2017

    Google Scholar 

  74. Yu, Yu., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 214–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_9

    Chapter  Google Scholar 

  75. Zhandry, M.: The magic of ELFs. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 479–508. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_18

    Chapter  Google Scholar 

Download references

Funding

This work has been partially funded/supported by the German Ministry for Education and Research through funding for the project CISPA-Stanford Center for Cybersecurity (Funding number 16KIS0927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Kluczniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kluczniak, K. (2022). Lockable Obfuscation from Circularly Insecure Fully Homomorphic Encryption. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13178. Springer, Cham. https://doi.org/10.1007/978-3-030-97131-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97131-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97130-4

  • Online ISBN: 978-3-030-97131-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics