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Abstract. Mitotic figure count is an important marker of tumor prolif-
eration and has been shown to associated with patients prognosis. Deep
learning based mitotic figure detection methods have been utilized to au-
tomatically locate the cell in mitosis using hematoxylin & eosin (H&E)
stained images. However, the model performance deteriorates due to the
large variation of color tone and intensity in H&E images. In this work,
we proposed a two stage mitotic figure detection framework by fusing a
detector and a deep ensemble classification model. To alleviate the im-
pact of color variation in H&E images, we utilize both stain normalization
and data augmentation, aiding model to learn color irrelevant features.
The proposed model obtains a F1 score of 0.7550 on the preliminary
testing set released by the MIDOG challenge.

Keywords: Mitosis · Domain shift · data augmentation · deep ensemble
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1 Introduction

Tumor proliferation obtained form hematoxylin & eosin stained (H&E) histopatho-
logical images provides valuable information regarding the patient prognosis and
treatment planning, especially in breast cancers [12]. Mitotic activity of tumor
cells observed in high power field view is an epiphenomenon of the cell prolif-
eration, is therefore selected to quantify the tumor proliferation and has been
shown to associated with the patients’ prognosis [8].

In pathology labs, experienced pathologists count the cell under active mi-
tosis phase in 10 consecutive high-power field views to calculate the mitotic
index. This practice is time-consuming and prone to human error inducing high
inter-observer disagreement [11]. Recently, owning to its superior performance in
computer vision tasks, deep learning based methods have been extensively stud-
ied for automatically identifying tumor cells in mitosis using whole-slide images
[4, 6, 13].
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The large variability observed in H&E stained pathological images still im-
peded the application of automatic mitosis detection in clinical settings. The
variability in H&E images may arise due to the difference in the scanner to ob-
tain WSI, or the procedure employed by different labs for tissue preparation and
staining [2, 5]. In fact, it was recently shown that the WSI itself contains enough
information to differentiate where it has been collected [5]. Hence, deep mitosis
detection algorithms that can generalize well across different scanners or from
different institutions are desired.

Despite the source of variation in the H&E images, it mostly manifests as
large variation in color tone among different H&E images. Hence, earlier at-
tempts primarily focused on unifying the color space by utilizing color nor-
malization techniques [7]. Among them, the Macenko stain normalization has
been employed in the prepossessing pipeline when training deep learning models
[3] . Furthermore, the model can also acquire ability to generalize to out-of-
distribution data by using data augmentation or using specially designed struc-
ture, such as domain-adversarial training [14].

In this work, we presented our approach to the MIDOG challenge [1]. Inspired
by earlier works [6, 4, 10], we constructed a two stages mitosis detection model
by using the detectorRS [9] as the base model to coarsely identify the mitosis
figure in the images. The results of detector model is later refined by a deep
ensemble classification model to illuminate false positives and improve the overall
performance. To address the domain shift problem, we employed both stain
normalization and data augmentation focusing on inducing color variation. Our
results suggested two-stages model equipped with both stain normalization and
data augmentation can be an potential solution to address the domain shift in
detecting mitosis figures in H&E images.

2 Data-set

The data-set was provided by the MIDOG challenge [1]. In brief, all images were
obtained from human breast cancer tissue samples after routine Hematoxylin &
Eosin staining. The Training set consists of 200 H&E images obtained from four
different scanners, including Hamamatsu XR nanozoomer 2.0, Hamamatsu S360
(0.5 NA), Aperio ScanScope CS2, and Leica GT450. Each scanner provided
50 H&E images. Mitotic figures were annotated for the first three scanners.
In total, annotation of 1721 and mitotic figures and 2714 non-mitotic figures
(hard negative cases) were provided. To train our model, we randomly selected
5 images from each scanner with annotation as the validation set. The rest of
training images were used to optimize the model.

The preliminary test set released by the the MIDOG challenge consisted of
20 WSIs from four scanners, in which two scanners were part of the training set
and the remaining two scanners are unknown.
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Fig. 1: Pipeline of the proposed mitotic figure detection framework

3 Proposed Model

The proposed model is shown in Fig.2. Our whole H&E image processing pipeline
consisted of five steps. Firstly, we cropped the original training images into
patches of the size 512×512 pixels, centered at the ground truth mitotic fig-
ures and hard negative cases. For each annotated cases, we randomly shifted
the center of each patch within the range of ±205 pixels. Then, a detectorRS
model [9] was trained to identify the location of mitotic figures using a bounding
box with a size of 50×50 pixels. In the training phase, all training images were
normalized with respect to the first images of the first scanner (001.tiff ) by us-
ing Macenko stain normalization. Then, we augmented the training patches by
using random rotation, elastic deformation, scaling, Gaussian blur and a bright-
ness and contrast enhancement. The detector was trained by using SGD with a
learning rate of 0.02 for 12 epochs. Once the detector was trained, we employed
the trained model to the whole training images to identify all suspected mitotic
figures. To be noted, the model was trained using patches containing annota-
tions of ground truth mitotic and hard negative cases, whereas the trained model
scanned through the training images can produce many previously un-annotated
false mitotic figures. This observation also motivated us to employed a second
stage classifier to refine the results produced by the detector.

The overall structure of deep ensemble model consists of five convolution
networks, adopted from [10]. The input to the deep ensemble model was the sus-
pected mitotic figures found by the trained detector on the training images with
a classification threshold of 0.3. The positive cases for training the classification
model consisted of all samples with ground truth mitotic figures. The negative
cases were the false positive cases identified by the detector on the whole training
images and the hard negative cases. Training samples for the classification model
were construed by shifting the center of obtained patches from detector within
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the range of [- 5, 5] pixels. To balance the training samples between positive and
negative cases, we adjusted the number of times of applying offset to balance the
number of cases in positive and negative classes. Finally, the samples were resized
to 120×120 and fed to the deep ensemble model. To overcome the domain shift
caused by different scanner, we heavily utilized online augmentation methods
that can induce color variation to increase the diversity of the training samples.
The augmentation employed were horizontal and vertical flipping, random clip-
ping and color jitter augmentation with luminance, contrast, hue and saturation
disturbance intensity. Each individual model was optimized using AdamW with
a learning rate of 2× 10−4 and was trained for 100 epochs. The optimal weights
for each individual convolution network was selected based on their performance
on the validation set. The output of the ensemble model was the weighted sum
of soft-max score produced by each convolution networks. The final decision of
the proposed two-stage mitotic figure detection was obtained by combing the
classification score obtained from both detector and deep ensemble model as,

Sfinal = α ∗ SDE + (1− α) ∗ SDect (1)

where α ∈ [0, 1] is the weights to balance the decision made by the detector and
the deep ensemble model and optimized on the validation set, Sfinal is the final
score to produce the final decision, SDE and SDect are the classification score
for the deep ensemble modular and detection modular, respectively.

4 Results

We first tested the performance of detection modular on the validation set. The
results of F1 score, precision and recall were given in Table.1. It can be observed
that detector alone was able to retrieve almost 80% of mitosis figures. In the
meantime, it also produced many false positives resulted in a inferior precision
score and a significantly degraded F1-score. The ability to refine the results
obtained from the detector by the ensemble classification model weighted by
different α was shown in Fig.2. It can be observed that by varying the value of
α ∈ [0, 1], the optimal performance on F1 score was found when α = 0.9. The
obtained model obtained a F1 score of 0.7550 on the preliminary testing set.

Detector Only Proposed model on valida-
tion set

Proposed model on prelimi-
nary testing set

F1-Score 0.5909 0.7128 0.7550

Precision 0.4719 0.7270 0.7238

Recall 0.7904 0.6993 0.7892

Table 1: Model performance on validation set and preliminary testing set
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Fig. 2: Performance of individual and ensemble classification model on the vali-
dation set

5 Conclusion

In conclusion, we presented a fused detector and deep ensemble classification
model with image preprocessed by stain normalization and heavy data augmen-
tation to address the domain shift problem for mitosis figure detection. Ex-
periment results showed that the fused model performs reasonably well on the
preliminary testing set released by the MIDOG challenge.
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