Abstract
Hyperparameter tuning is extremely tedious and costly in the deep learning-based deformable image registration methods. In this paper, we present our contribution to the Learn2Reg challenge and demonstrate how hyperparameter tuning can be accelerated and simplified with the proposed conditional image registration framework. We exemplify the conditional image registration framework with the deep Laplacian pyramid image registration network (cLapIRN) and apply it comprehensively to all three tasks in the challenge. Our method was ranked the first place in the Learn2Reg 2021 challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Learn2Reg: 2021 MICCAI registration challenge. https://learn2reg.grand-challenge.org/. Accessed 8 Oct 2021
Validation leaderboard of Learn2Reg 2021 MICCAI registration challenge. https://learn2reg.grand-challenge.org/evaluation/test/leaderboard/. Accessed 8 Oct 2021
Workshop schedule of Learn2Reg 2021 MICCAI registration challenge. https://learn2reg.grand-challenge.org/Workshop/. Accessed 8 Oct 2021
Clark, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7
Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. International Conference on Learning Representations (2017)
Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 726–733. Springer, Heidelberg (2006). https://doi.org/10.1007/11866763_89
Heinrich, M.P.: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 50–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_6
Heinrich, M.P., et al.: MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)
Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24
Hering, A., Häger, S., Moltz, J., Lessmann, N., Heldmann, S., van Ginneken, B.: CNN-based lung CT registration with multiple anatomical constraints. Med. Image Anal. 72, 102139 (2021)
Hering, A., et al.: Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. arXiv preprint arXiv:2112.04489 (2021)
Hering, A., Murphy, K., van Ginneken, B.: Lean2Reg challenge: CT lung registration-training data (2020)
Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., Dalca, A.V.: HyperMorph: amortized hyperparameter learning for image registration. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_1
Kavur, A.E., et al.: CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)
Marcus, D.S., Wang, T.H., Parker, J., et al.: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)
Mok, T.C., Chung, A.: Fast symmetric diffeomorphic image registration with convolutional neural networks. In: CVPR, pp. 4644–4653 (2020)
Mok, T.C.W., Chung, A.C.S.: Large deformation image registration with anatomy-aware Laplacian pyramid networks. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 61–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71827-5_7
Mok, T.C.W., Chung, A.C.S.: Conditional deformable image registration with convolutional neural network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 35–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_4
Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21
Xu, Z., Lee, C.P., Heinrich, M.P., et al.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Mok, T.C.W., Chung, A.C.S. (2022). Conditional Deep Laplacian Pyramid Image Registration Network in Learn2Reg Challenge. In: Aubreville, M., Zimmerer, D., Heinrich, M. (eds) Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis. MICCAI 2021. Lecture Notes in Computer Science(), vol 13166. Springer, Cham. https://doi.org/10.1007/978-3-030-97281-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-97281-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97280-6
Online ISBN: 978-3-030-97281-3
eBook Packages: Computer ScienceComputer Science (R0)