Skip to main content

Domain-Specific Cycle-GAN Augmentation Improves Domain Generalizability for Mitosis Detection

  • Conference paper
  • First Online:
Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis (MICCAI 2021)

Abstract

As the third-place winning method for the MIDOG mitosis detection challenge, we created a cascade algorithm consisting of a Mask-RCNN detector, followed by a classification ensemble consisting of ResNet50 and DenseNet201 to refine detected mitotic candidates. The MIDOG training data consists of 200 frames originating from four scanners, three of which are annotated for mitotic instances with centroid annotations. Our main algorithmic choices are as follows: first, to enhance the generalizability of our detector and classification networks, we use a state-of-the-art Residual Cycle-GAN to transform each scanner domain to every other scanner domain. During training, we then randomly load, for each image, one of the four domains. In this way, our networks can learn from the fourth non-annotated scanner domain even if we don’t have annotations for it. Second, for training the detector network, rather than using centroid-based fixed-size bounding boxes, we create mitosis-specific bounding boxes. We do this by manually annotating a small selection of mitoses, training a Mask-RCNN on this small dataset, and applying it to the rest of the data to obtain full annotations. We trained the follow-up classification ensemble using only the challenge-provided positive and hard-negative examples. On the preliminary and final test set, the algorithm scores an F1 score of 0.7578 and 0.7361, respectively, putting us as the preliminary second-place and final third-place team on the leaderboard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubreville, M., et al.: MItosis DOmain Generalization challenge (MIDOG). In: 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2021). https://doi.org/10.5281/zenodo.4573978

  2. Aubreville, M., et al.: Quantifying the scanner-induced domain gap in mitosis detection. In: Medical Imaging with Deep Learning (MIDL) (2021)

    Google Scholar 

  3. de Bel, T., et al.: Residual cyclegan for robust domain transformation of histopathological tissue slides. Med. Image Anal. 70, 102004 (2021)

    Article  Google Scholar 

  4. Bertram, C.A., et al.: Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels. In: Cardoso, J., et al. (eds.) IMIMIC/MIL3ID/LABELS -2020. LNCS, vol. 12446, pp. 204–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61166-8_22

    Chapter  Google Scholar 

  5. Ciga, O., Xu, T., Martel, A.L.: Self supervised contrastive learning for digital histopathology. Mach. Learn. Appl. 7, 100198 (2021)

    Google Scholar 

  6. Faryna, K., van der Laak, J., Litjens, G.: Tailoring automated data augmentation to H&E-stained histopathology. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  7. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. He, K., et al.: Mask R-CNN. In: Proceedings of the IEEE ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  9. Huang, G., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  10. Kausar, T., et al.: SmallMitosis: small size mitotic cells detection in breast histopathology images. IEEE Access 9, 905–922 (2020)

    Article  Google Scholar 

  11. MITOS14 Challenge (2014). https://mitos-atypia-14.grand-challenge.org/

  12. Ren, S., et al.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (2016). arXiv: 1506.01497 [cs.CV]

  13. Roux, L., et al.: Mitosis detection in breast cancer histological images an ICPR 2012 contest. J. Pathol. Inform. 4 (2013)

    Google Scholar 

  14. Veta, M., et al.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20(1), 237–248 (2015)

    Article  Google Scholar 

  15. Veta, M., et al.: Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54, 111–121 (2019)

    Article  Google Scholar 

  16. Wilm, F., Breininger, K., Aubreville, M.: Domain adversarial RetinaNet as a reference algorithm for the MItosis DOmain Generalization (MIDOG) challenge. In: Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis, MICCAI 2021 Challenges L2R, MIDOG and MOOD (2021)

    Google Scholar 

  17. Wilm, F., et al.: Influence of inter-annotator variability on automatic mitotic figure assessment. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2021. I, pp. 241–246. Springer, Wiesbaden (2021). https://doi.org/10.1007/978-3-658-33198-6_56

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger H. J. Fick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fick, R.H.J., Moshayedi, A., Roy, G., Dedieu, J., Petit, S., Hadj, S.B. (2022). Domain-Specific Cycle-GAN Augmentation Improves Domain Generalizability for Mitosis Detection. In: Aubreville, M., Zimmerer, D., Heinrich, M. (eds) Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis. MICCAI 2021. Lecture Notes in Computer Science(), vol 13166. Springer, Cham. https://doi.org/10.1007/978-3-030-97281-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97281-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97280-6

  • Online ISBN: 978-3-030-97281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics