Skip to main content

Forecasting Tropospheric Ozone Using Neural Networks and Wavelets: Case Study of a Tropical Coastal-Urban Area

  • Chapter
  • First Online:
Computational Intelligence Methodologies Applied to Sustainable Development Goals

Abstract

Air quality improvement is directly associated with the Sustainable Development Goals (SDGs), established by the United Nations in 2015. To reduce potential impacts from air pollution, computational intelligence by supervised machine learning, using different artificial neural networks (ANNs) techniques, shows to be a promising tool. To enhance their abilities to predict air quality, ANNs have been combined with data preprocessing. The present work performs short-term forecasting of hourly ground-level ozone using long short-term memory (LSTM), a type of recurrent neural network, with the discrete wavelet transform. The study was performed using data from a tropical coastal-urban site in Southeast Brazil, highly influenced by intense convective weather with complex terrain. The models’ performance was carried out by comparing statistical indices of errors and agreement, namely: mean squared error (MSE), normalized mean squared error (NMSE), mean absolute error (MAE), Pearson’s r, R2 and mean absolute percentage error (MAPE). When comparing the statistical metrics values, it is shown that the combination of artificial neural networks with wavelet transform enhanced the model’s ability to forecast ozone levels compared to the baseline model, which did not use wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Dabbous, A.N., Kumar, P., Khan, A.R.: Prediction of airborne nanoparticles at roadside location using a feed–forward artificial neural network. Atmos. Pollut. Res. 8(3), 446–454 (2017). https://doi.org/10.1016/j.apr.2016.11.004

    Article  Google Scholar 

  2. AlOmar, M.K., Hameed, M.M., AlSaadi, M.A.: Multi hours ahead prediction of surface ozone gas concentration: robust artificial intelligence approach. Atmos. Pollut. Res. 11(9), 1572–1587 (2020)

    Article  Google Scholar 

  3. Alves, A., Nascimento, E.G.S., Moreira, D.M.: Hourly tropospheric ozone concentration forecasting using deep learning. WIT Trans. Ecol. Environ. 236, 129–138 (2019). https://doi.org/10.2495/AIR190131

    Article  Google Scholar 

  4. Arjomandi, M., Wong, H., Donde, A., Frelinger, J., Dalton, S., Ching, W., Power, K., Balmes, J.R.: Exposure to medium and high ambient levels of ozone causes adverse systemic inflammatory and cardiac autonomic effects. Am. J. Physiol. Heart Circ. 308, H1499–H1509 (2015). https://doi.org/10.1152/ajpheart.00849.2014

  5. Bai, Y., Li, Y., Wang, X., Xie, J., Li, C.: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmos. Polut. Res. 7(3), 557–566 (2016). https://doi.org/10.1016/j.apr.2016.01.004

    Article  Google Scholar 

  6. Baklanov, A., Zhang, Y.: Advances in air quality modeling and forecasting. Glob. Transit. 2, 261–270 (2020). https://doi.org/10.1016/j.glt.2020.11.001

    Article  Google Scholar 

  7. Bruyn, S., Vries, J.: Health costs of air pollution in European cities and the linkage with transport. Available at https://www.cedelft.eu/en/publications/2534/health-costs-of-air-pollution-in-european-cities-and-the-linkage-with-transport (2020).Accessed on 18 Apr 2021

  8. Cheng, Y., Zhang, H., Liu, Z., Chen, L., Wang, P.: Hybrid algorithm for short-term forecasting of PM2.5 in China. Atmos. Environ. 200, 264–279 (2019). https://doi.org/10.1016/j.atmosenv.2018.12.025

    Article  Google Scholar 

  9. Chollet, F.: Deep Learning with Python. Manning, New York (2018)

    Google Scholar 

  10. Dunea, D., Pohoata, A., Iordache, S.: Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments. Environ. Monit. Assess. 187(7), 1–16 (2015)

    Article  Google Scholar 

  11. Feng, Z., Marco, A., Anav, A., Gualtieri, M., Sicard, P., Tian, H., Fornasier, F., Tao, F., Guo, A., Paoletti, A.: Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 131, 104966 (2019). https://doi.org/10.1016/j.envint.2019.104966

    Article  Google Scholar 

  12. Graps, A.: An introduction to wavelets. IEEE Comput. Sci. Eng. 2(2), 50–61 (1995)

    Article  Google Scholar 

  13. Guo, Q., He, Z., Li, S., Li, X., Meng, J., Hou, Z., Liu, J., Chen, Y.: Air pollution forecasting using artificial and wavelet neural networks with meteorological conditions. Aerosol Air Qual. Res. 20, 1429–1439 (2020). https://doi.org/10.4209/aaqr.2020.03.0097

    Article  Google Scholar 

  14. Hu, X., He, L., Zhang, J., Qiu, X., Zhang, Y., Mo, J., Day, D.B., Xiang, J., Gong, J.: Inflammatory and oxidative stress responses of healthy adults to changes in personal air pollutant exposure. Environ. Pollut. 263(A), 114503 (2020). https://doi.org/10.1016/j.envpol.2020.114503

  15. Huang, J., Song, Y., Chu, M., Dong, W., Miller, M.R., Loh, M., Xu, J., Yang, D., Chi, R., Yang, X., Wu, S., Guo, X., Deng, F.: Cardiorespiratory responses to low-level ozone exposure: the inDoor ozone study in childrEn (DOSE). Environ. Int. 131, 105021 (2019). https://doi.org/10.1016/j.envint.2019.105021

    Article  Google Scholar 

  16. IEMA (Instituto Estadual de Meio Ambiente e Recursos Hídricos): Ambient Air Quality Monitoring System data. Available at https://iema.es.gov.br/qualidadedoar/dadosdemonitoramento/automatica (2021)

  17. Junior, A.S.R., Nascimento, E.G.S., Moreira, D.M.: Assessing recurrent and convolutional neural networks for tropospheric ozone forecasting in the region of Vitória, Brazil. WIT Trans. Ecol. Environ. 244, 101–112 (2020). https://doi.org/10.2495/AIR200091

    Article  Google Scholar 

  18. Kitagawa, Y.K.L., Nascimento, E.G.S., Souza, N.B.P., Zucatelli, P.J., Kumar, P., Albuquerque, T.T.A., Moraes, R.M., Moreira, D.M.: Evaluation of the WRF-ARW model during an extreme rainfall event: subtropical storm Guará. Atmósfera (2021). (in press). https://doi.org/10.20937/ATM.52977

  19. Langford, A.O., Senff, C.J., Alvarez, R.J., Banta, R.M., Hardesty, R.M.: Long-range transport of ozone from the Los Angeles Basin: a case study. Geophys. Res. Lett 37, L06807 (2010). https://doi.org/10.1029/2010GL042507

    Article  Google Scholar 

  20. Lee, G., Gommers, R., Waselewski, F., Wohlfahrt, K., O’Leary, A.: PyWavelets: a Python package for wavelet analysis. J. Open Source Softw. 4(36), 1237 (2019)

    Article  Google Scholar 

  21. Liu, H., Yin, S., Chen, C., Duan, Z.: Data multi-scale decomposition strategies for air pollution forecasting: a comprehensive review. J. Clean. Prod. 277, 124023 (2020). https://doi.org/10.1016/j.jclepro.2020.124023

    Article  Google Scholar 

  22. Lu, Y., Salem, F.M.: Simplified gating in long short-term memory (LSTM) recurrent neural networks. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) (2017). https://doi.org/10.1109/mwscas.2017.8053244

  23. Maji, K.J., Ye, W.-F., Arora, M., Shiva, S.M.N.: Ozone pollution in Chinese cities: assessment of seasonal variation, health effects and economic burden. Environ. Pollut. 247, 792–801 (2019). https://doi.org/10.1016/j.envpol.2019.01.049

    Article  Google Scholar 

  24. Mallet, V., Sportisse, B.: Air quality modeling: from deterministic to stochastic approaches. Comput. Math. Appl. 55(10), 2329–2337 (2008). https://doi.org/10.1016/j.camwa.2007.11.004

    Article  MathSciNet  MATH  Google Scholar 

  25. Mbatha, N., Bencherif, H.: Time series analysis and forecasting using a novel hybrid LSTM data-driven model based on empirical wavelet transform applied to total column of ozone at Buenos Aires, Argentina (1966–2017). Atmosphere 11(5), 457 (2020)

    Article  Google Scholar 

  26. Nielsen, M.A.: Neural Networks and Deep Learning, vol. 25. Determination Press, San Francisco (2015)

    Google Scholar 

  27. Prüss-Ustün, A., Wolf, J., Corvalán, C., Bos, R., Neira, M.: Preventing disease through healthy environments: a global assessment of the environmental burden of disease. Toxicol. Lett. 259, S1 (2016). https://doi.org/10.1016/j.toxlet.2016.07.028

    Article  Google Scholar 

  28. Sayeed, A., Lops, Y., Choi, Y., Jung, J., Salman, A.K.: Bias correcting and extending the PM forecast by CMAQ up to 7 days using deep convolutional neural networks. Atmos. Environ. 253, 118376 (2021). https://doi.org/10.1016/j.atmosenv.2021.118376

    Article  Google Scholar 

  29. WHO (World Health Organization): Ambient air pollution: a global assessment of exposure and burden of disease (2016)

    Google Scholar 

  30. Yafouz, A., Ahmed, A.N., Zaini, N., El-Shafie, A.: Ozone concentration forecasting based on artificial intelligence techniques: a systematic review. Water Air Soil Pollut. 232, 79 (2021). https://doi.org/10.1007/s11270-021-04989-5

    Article  Google Scholar 

  31. Young, P.J., Archibald, A.T., Bowman, K.W., Lamarque, J.-F., Naik, V., Stevenson, D.S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W.J., Dalsøren, S.B., Doherty, R.M., Eyring, V., Faluvegi, G., Horowitz, L.W., Josse, B., Lee, Y.H., MacKenzie, I.A., Nagashima, T., Plummer, D.A., Righi, M., Rumbold, S.T., Skeie, R.B., Shindell, D.T., Strode, S.A., Sudo, K., Szopa, S., Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the atmospheric chemistry and climate model intercomparison project (ACCMIP). Atmos. Chem. Phys. 13, 2063–2090 (2013). https://doi.org/10.5194/acp-13-2063-2013

    Article  Google Scholar 

  32. Zhen, Z., Wan, X., Wang, Z., Wang, F., Ren, H., Mi, Z.: Multi-level wavelet decomposition based day-ahead solar irradiance forecasting. In: 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (pp. 1–5). IEEE, Feb 2018

    Google Scholar 

  33. Zucatelli, P.J., Nascimento, E.G.N., Santos, A.A.B., Moreira, D.M.: Nowcasting prediction of wind speed using computational intelligence and wavelet in Brazil. Int. J. Comput. Methods Eng. Sci. Mech. 21(6), 343–369 (2020). https://doi.org/10.1080/15502287.2020.1841335

Download references

Acknowledgements

We thank the Reference Center on Artificial Intelligence (CRIA), the Supercomputing Center for Industrial Innovation (CS2i), both at the Manufacturing and Technology Integrated Campus—SENAI CIMATEC for their support, and the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) for its financial aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Giovani Sperandio Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araujo, M.L.S., Kitagawa, Y.K.L., Moreira, D.M., Nascimento, E.G.S. (2022). Forecasting Tropospheric Ozone Using Neural Networks and Wavelets: Case Study of a Tropical Coastal-Urban Area. In: Verdegay, J.L., Brito, J., Cruz, C. (eds) Computational Intelligence Methodologies Applied to Sustainable Development Goals. Studies in Computational Intelligence, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-030-97344-5_11

Download citation

Publish with us

Policies and ethics