Skip to main content

Learning Logic Programs Using Neural Networks by Exploiting Symbolic Invariance

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13191))

Included in the following conference series:

  • 391 Accesses

Abstract

Learning from Interpretation Transition (LFIT) is an unsupervised learning algorithm which learns the dynamics just by observing state transitions. LFIT algorithms have mainly been implemented in the symbolic method, but they are not robust to noisy or missing data. Recently, research works combining logical operations with neural networks are receiving a lot of attention, with most works taking an extraction based approach where a single neural network model is trained to solve the problem, followed by extracting a logic model from the neural network model. However most research work suffer from the combinatorial explosion problem when trying to scale up to solve larger problems. In particular a lot of the invariance that hold in the symbolic world are not getting utilized in the neural network field. In this work, we present a model that exploits symbolic invariance in our problem. We show that our model is able to scale up to larger tasks than previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)

    Google Scholar 

  2. Brown, T.B., Mann, B., et al.: Language models are few-shot learners. CoRR, abs/2005.14165 (2020)

    Google Scholar 

  3. d’Avila Garcez, A.S., Gori, M., Lamb, L.C., Serafini, L., Spranger, M., Tran, S.N.: Neural-symbolic computing: an effective methodology for principled integration of machine learning and reasoning. CoRR, abs/1905.06088 (2019)

    Google Scholar 

  4. Garcez, A.D.A., Broda, K., Gabbay, D.M.: Symbolic knowledge extraction from trained neural networks: a sound approach. Artif. Intell. 125(1), 155–207 (2001)

    Article  MathSciNet  Google Scholar 

  5. Dong, H., Mao, J., Lin, T., Wang, C., Li, L., Zhou, D.: Neural logic machines. CoRR, abs/1904.11694 (2019)

    Google Scholar 

  6. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. CoRR, abs/1711.04574 (2017)

    Google Scholar 

  7. Avila Garcez, A.S., Zaverucha, G.: The connectionist inductive learning and logic programming system. Appl. Intell. 11(1), 59–77 (1999)

    Article  Google Scholar 

  8. d’Avila Garcez, A.S., Gabbay, D.M., Broda, K.B.: Neural-symbolic learning system: foundations and applications. Springer, Heidelberg (2002). https://doi.org/10.1007/978-1-4471-0211-3

  9. Gentet, E., Tourret, S., Inoue, K.: Learning from interpretation transition using feed-forward neural network. In: Proceedings of ILP 2016, CEUR Proceedings 1865, pp. 27–33 (2016)

    Google Scholar 

  10. Hendrycks, D., Gimpel, K.: Bridging nonlinearities and stochastic regularizers with gaussian error linear units. CoRR, abs/1606.08415 (2016)

    Google Scholar 

  11. Inoue, K.: Logic programming for boolean networks. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16–22 July 2011, pp. 924–930. IJCAI/AAAI (2011)

    Google Scholar 

  12. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Mach. Learn. 94(1), 51–79 (2013). https://doi.org/10.1007/s10994-013-5353-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the generation, analysis and visualization of boolean networks. Bioinformatics 33(5), 770–772 (2016)

    Google Scholar 

  14. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer. CoRR, abs/1810.00825 (2018)

    Google Scholar 

  15. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates Inc (2019)

    Google Scholar 

  16. Phua, Y.J., Inoue, K.: Learning logic programs from noisy state transition data. In: Kazakov, D., Erten, C. (eds.) ILP 2019. LNCS (LNAI), vol. 11770, pp. 72–80. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49210-6_7

    Chapter  Google Scholar 

  17. Reed, S., De Freitas, N.: Neural programmer-interpreters. arXiv preprint arXiv:1511.06279 (2015)

  18. Ribeiro, T., Inoue, K.: Learning prime implicant conditions from interpretation transition. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS (LNAI), vol. 9046, pp. 108–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23708-4_8

    Chapter  Google Scholar 

  19. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning delayed influences of biological systems. Front. Bioeng. Biotechnol. 2, 81 (2015)

    Article  Google Scholar 

  20. Rintala, T., et al.: Using boolean network extraction of trained neural networks to reverse-engineer gene-regulatory networks from time-series data (2019)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. CoRR, abs/1706.03762 (2017)

    Google Scholar 

  22. Xiao, Y., Dougherty, E.R.: The impact of function perturbations in Boolean networks. Bioinformatics 23(10), 1265–1273 (2007)

    Article  Google Scholar 

  23. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Jun Phua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phua, Y.J., Inoue, K. (2022). Learning Logic Programs Using Neural Networks by Exploiting Symbolic Invariance. In: Katzouris, N., Artikis, A. (eds) Inductive Logic Programming. ILP 2021. Lecture Notes in Computer Science(), vol 13191. Springer, Cham. https://doi.org/10.1007/978-3-030-97454-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97454-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97453-4

  • Online ISBN: 978-3-030-97454-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics