Skip to main content

A Simulated Annealing Meta-heuristic for Concept Learning in Description Logics

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2021)

Abstract

Ontologies – providing an explicit schema for underlying data – often serve as background knowledge for machine learning approaches. Similar to ILP methods, concept learning utilizes such ontologies to learn concept expressions from examples in a supervised manner. This learning process is usually cast as a search process through the space of ontologically valid concept expressions, guided by heuristics. Such heuristics usually try to balance explorative and exploitative behaviors of the learning algorithms. While exploration ensures a good coverage of the search space, exploitation focuses on those parts of the search space likely to contain accurate concept expressions. However, at their extreme ends, both paradigms are impractical: A totally random explorative approach will only find good solutions by chance, whereas a greedy but myopic, exploitative attempt might easily get trapped in local optima. To combine the advantages of both paradigms, different meta-heuristics have been proposed. In this paper, we examine the Simulated Annealing meta-heuristic and how it can be used to balance the exploration-exploitation trade-off in concept learning. In different experimental settings, we analyse how and where existing concept learning algorithms can benefit from the Simulated Annealing meta-heuristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://lod-cloud.net/.

  2. 2.

    https://github.com/SmartDataAnalytics/DL-Learner/tree/feature/extended-metaheuristics.

  3. 3.

    https://github.com/patrickwestphal/learning_scenario_generators/releases/tag/v0.1.0.

  4. 4.

    https://github.com/SmartDataAnalytics/SML-Bench/tree/updates/learningtasks.

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  2. Bühmann, L., Lehmann, J., Westphal, P.: DL-learner - a framework for inductive learning on the semantic web. Web Seman. 39, 15–24 (2016)

    Article  Google Scholar 

  3. Castillo, L.P., Wrobel, S.: A comparative study on methods for reducing myopia of hill-climbing search in multirelational learning. In: ICML 2004. ACM (2004)

    Google Scholar 

  4. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30475-3_31

    Chapter  Google Scholar 

  5. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL - concept learning in description logics. In: ILP 2008, pp. 107–121 (2008)

    Google Scholar 

  6. Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., Semeraro, G.: Downward refinement in the \(\cal{ALN}\) description logic. In: HIS 2004, pp. 68–73. IEEE (2005)

    Google Scholar 

  7. Fanizzi, N., Rizzo, G., d’Amato, C.: Boosting DL concept learners. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 68–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0_5

    Chapter  Google Scholar 

  8. Fanizzi, N., Rizzo, G., d’Amato, C., Esposito, F.: DLFoil: class expression learning revisited. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018. LNCS (LNAI), vol. 11313, pp. 98–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03667-6_7

    Chapter  MATH  Google Scholar 

  9. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Appl. Intell. 26(2), 139–159 (2007)

    Article  Google Scholar 

  10. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. J. Web Semant. 9(1), 71–81 (2011)

    Article  Google Scholar 

  11. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\cal{ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2_17

    Chapter  MATH  Google Scholar 

  12. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. J. 78(1–2), 203–250 (2010)

    Article  MathSciNet  Google Scholar 

  13. Luke, S.: Essentials of Metaheuristics, 2nd edn. Lulu, Abu Dhabi (2013)

    Google Scholar 

  14. Muggleton, S., Watanabe, H. (eds.): Latest Advances in Inductive Logic Programming. World Scientific, Singapore (2014)

    Google Scholar 

  15. Rizzo, G., Fanizzi, N., d’Amato, C.: Class expression induction as concept space exploration: from DL-Foil to DL-Focl. FGCS 180, 256–272 (2020)

    Article  Google Scholar 

  16. Rizzo, G., Fanizzi, N., d’Amato, C., Esposito, F.: A framework for tackling myopia in concept learning on the web of data. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018. LNCS (LNAI), vol. 11313, pp. 338–354. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03667-6_22

    Chapter  MATH  Google Scholar 

  17. Serrurier, M., Prade, H.: Improving inductive logic programming by using simulated annealing. Inf. Sci. 178(6), 1423–1441 (2008)

    Article  MathSciNet  Google Scholar 

  18. Tran, A.C., Dietrich, J., Guesgen, H.W., Marsland, S.: An approach to parallel class expression learning. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 302–316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32689-9_25

    Chapter  Google Scholar 

  19. Tran, A.C., Dietrich, J., Guesgen, H.W., Marsland, S.: Parallel symmetric class expression learning. J. Mach. Learn. Res. 18(1), 2145–2178 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Železný, F., Srinivasan, A., Page, C.D.: Randomised restarted search in ILP. Mach. Learn. 64(1–3), 183–208 (2006)

    Article  Google Scholar 

  21. Westphal, P., Bühmann, L., Bin, S., Jabeen, H., Lehmann, J.: SML-bench - a benchmarking framework for structured machine learning. SWJ 10(2), 231–245 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Westphal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Westphal, P., Vahdati, S., Lehmann, J. (2022). A Simulated Annealing Meta-heuristic for Concept Learning in Description Logics. In: Katzouris, N., Artikis, A. (eds) Inductive Logic Programming. ILP 2021. Lecture Notes in Computer Science(), vol 13191. Springer, Cham. https://doi.org/10.1007/978-3-030-97454-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97454-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97453-4

  • Online ISBN: 978-3-030-97454-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics