Skip to main content

Non-parametric Learning of Embeddings for Relational Data Using Gaifman Locality Theorem

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13191))

Included in the following conference series:

Abstract

We consider the problem of full model learning from relational data. To this effect, we construct embeddings using symbolic trees learned in a non-parametric manner. The trees are treated as a decision-list of first order rules that are then partially grounded and counted over local neighborhoods of a Gaifman graph to obtain the feature representations. We propose the first method for learning these relational features using a Gaifman graph by using relational tree distances. Our empirical evaluation on real data sets demonstrates the superiority of our approach over handcrafted rules, classical rule-learning approaches, the state-of-the-art relational learning methods and embedding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Any ILP learner such as Aleph [26] or PROGOL [19] can be used.

  2. 2.

    https://bit.ly/3jp9NA2.

  3. 3.

    https://bit.ly/3jp9NA2.

  4. 4.

    https://github.com/Accenture/AmpliGraph.

  5. 5.

    https://github.com/pykeen/pykeen.

  6. 6.

    https://github.com/Mehran-k/SimplE.

  7. 7.

    https://github.com/fanyangxyz/Neural-LP.

  8. 8.

    https://pypi.org/project/stellargraph/.

  9. 9.

    For performance of algorithms other than LR and GB see https://bit.ly/3jp9NA2.

  10. 10.

    We also tried other systems: Alchemy, Problog, ProbCog.

References

  1. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101, 285–297 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS (2013)

    Google Scholar 

  3. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. In: IEEE TKDE (2018)

    Google Scholar 

  4. De Campos, C.P., Zeng, Z., Ji, Q.: Structure learning of Bayesian networks using constraints. In: ICML (2009)

    Google Scholar 

  5. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI (2018)

    Google Scholar 

  6. Dhami, D.S., Kunapuli, G., Das, M., Page, D., Natarajan, S.: Drug-drug interaction discovery: kernel learning from heterogeneous similarities. Smart Health 9–10, 88–100 (2018)

    Article  Google Scholar 

  7. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: KDD (2017)

    Google Scholar 

  8. Gaifman, H.: On local and non-local properties. Stud. Logic Found. Math. 107, 105–135 (1982)

    Article  Google Scholar 

  9. Getoor, L., Taskar, B.: Intro to Statistical Relational Learning. MIT press (2007)

    Google Scholar 

  10. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL-IJCNLP (2015)

    Google Scholar 

  11. Kaur, N., Kunapuli, G., Khot, T., Kersting, K., Cohen, W., Natarajan, S.: Relational restricted Boltzmann machines: a probabilistic logic learning approach. In: ILP (2017)

    Google Scholar 

  12. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: NeurIPS (2018)

    Google Scholar 

  13. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning Markov logic networks via functional gradient boosting. In: ICDM (2011)

    Google Scholar 

  14. Khot, T., Natarajan, S., Shavlik, J.W.: Relational one-class classification: a non-parametric approach. In: AAAI (2014)

    Google Scholar 

  15. Kok, S., et al.: The alchemy system for statistical relational \(\{\)AI\(\}\) (2009)

    Google Scholar 

  16. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81, 53–67 (2010). https://doi.org/10.1007/s10994-010-5205-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI (2015)

    Google Scholar 

  18. Mitchell, T., Cohen, W., et al.: Never-ending learning. ACM Commun. 61, 103–115 (2018)

    Article  Google Scholar 

  19. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13, 245–286 (1995). https://doi.org/10.1007/BF03037227

    Article  Google Scholar 

  20. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based boosting for statistical relational learning: the relational dependency network case. Mach. Learn. 100, 75–100 (2015). https://doi.org/10.1007/s10994-015-5481-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Nickel, M., Rosasco, L., Poggio, T.A., et al.: Holographic embeddings of knowledge graphs. In: AAAI (2016)

    Google Scholar 

  22. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: NIPS (2017)

    Google Scholar 

  23. Niepert, M.: Discriminative Gaifman models. In: NIPS (2016)

    Google Scholar 

  24. Niu, F., Ré, C., Doan, A., Shavlik, J.: Tuffy: scaling up statistical inference in Markov Logic Networks using an RDBMS. In: VLDB (2011)

    Google Scholar 

  25. Raedt, L.D., Kersting, K., Natarajan, S., Poole, D.: Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Synthesis Lectures on AI and ML (2016)

    Google Scholar 

  26. Srinivasan, A.: The Aleph manual (2001)

    Google Scholar 

  27. Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data. In: NIPS (2004)

    Google Scholar 

  28. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML (2016)

    Google Scholar 

  29. Walker T., et al.: ILP for bootstrapped learning: a layered approach to automating the ILP setup problem. In: ILP (2009)

    Google Scholar 

  30. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014)

    Google Scholar 

  31. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

  32. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: NeurIPS (2017)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Air Force Office of Scientific Research under award number FA9550-191-0391. SN also acknowledges AFOSR award FA9550-18-1-0462. Any opinions, findings, conclusion or recommendations expressed are those of the authors and do not necessarily reflect the view of AFOSR or the US government. DSD also acknowledges ICT-48 Network of AI Research Excellence Center “TAILOR” (EU Horizon 2020, GA No 952215) and the Collaboration Lab “AI in Construction” (AICO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Singh Dhami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhami, D.S., Yan, S., Kunapuli, G., Natarajan, S. (2022). Non-parametric Learning of Embeddings for Relational Data Using Gaifman Locality Theorem. In: Katzouris, N., Artikis, A. (eds) Inductive Logic Programming. ILP 2021. Lecture Notes in Computer Science(), vol 13191. Springer, Cham. https://doi.org/10.1007/978-3-030-97454-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97454-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97453-4

  • Online ISBN: 978-3-030-97454-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics