Skip to main content

An Explanation Module for Deep Neural Networks Facing Multivariate Time Series Classification

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

  • 1989 Accesses

Abstract

Deep neural networks currently achieve state-of-the-art performance in many multivariate time series classification (MTSC) tasks, which are crucial for various real-world applications. However, the black-box characteristic of deep learning models impedes humans from obtaining insights into the internal regulation and decisions made by classifiers. Existing explainability research generally requires constructing separate explanation models to work with deep learning models or process their results, thus calling for additional development efforts. We propose a novel explanation module pluggable into existing deep neural networks to explore variable importance for explaining MTSC. We evaluate our module with popular deep neural networks on both real-world and synthetic datasets to demonstrate its effectiveness in generating explanations for MTSC. Our experiments also show the module improves the classification accuracy of existing models due to the comprehensive incorporation of temporal features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ancona, M., Oztireli, C., Gross, M.: Explaining deep neural networks with a polynomial time algorithm for shapley value approximation. In: International Conference on Machine Learning, pp. 272–281. PMLR (2019)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  3. Bai, L., Yao, L., Kanhere, S.S., Wang, X., Yang, Z.: Automatic device classification from network traffic streams of internet of things. In: 2018 IEEE 43rd Conference on Local Computer Networks (LCN), pp. 1–9. IEEE (2018)

    Google Scholar 

  4. Bai, L., Yao, L., Wang, X., Kanhere, S.S., Xiao, Y.: Prototype similarity learning for activity recognition. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12084, pp. 649–661. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47426-3_50

    Chapter  Google Scholar 

  5. Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional time series forecasting with convolutional neural networks. arXiv preprint arXiv:1703.04691 (2017)

  6. Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A 519, 127–139 (2019)

    Article  Google Scholar 

  7. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)

    Google Scholar 

  8. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  9. Choi, E., Bahadori, M.T., Kulas, J.A., Schuetz, A., Stewart, W.F., Sun, J.: Retain: an interpretable predictive model for healthcare using reverse time attention mechanism. arXiv preprint arXiv:1608.05745 (2016)

  10. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  11. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45(1), 1–34 (2012)

    Article  Google Scholar 

  12. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887 (2017)

  14. Gao, S., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.H.: Res2net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 652–662 (2019)

    Article  Google Scholar 

  15. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Google Scholar 

  16. Guo, B., Mu, Y., Wang, F., Dong, S.: Effect of periodic light color change on the molting frequency and growth of litopenaeus vannamei. Aquaculture 362, 67–71 (2012)

    Article  Google Scholar 

  17. Guo, B., Wang, F., Li, Y., Dong, S.: Effect of periodic light intensity change on the molting frequency and growth of litopenaeus vannamei. Aquaculture 396, 66–70 (2013)

    Article  Google Scholar 

  18. Han, M., Liu, X.: Feature selection techniques with class separability for multivariate time series. Neurocomputing 110, 29–34 (2013)

    Article  Google Scholar 

  19. Han, Z., Zhao, J., Leung, H., Ma, K.F., Wang, W.: A review of deep learning models for time series prediction. IEEE Sens. J. 21(6), 7833–7848 (2019)

    Article  Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  22. Hoermann, S., Bach, M., Dietmayer, K.: Dynamic occupancy grid prediction for urban autonomous driving: a deep learning approach with fully automatic labeling. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2056–2063. IEEE (2018)

    Google Scholar 

  23. Hsieh, T.Y., Wang, S., Sun, Y., Honavar, V.: Explainable multivariate time series classification: a deep neural network which learns to attend to important variables as well as time intervals. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 607–615 (2021)

    Google Scholar 

  24. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  25. Karevan, Z., Suykens, J.A.: Transductive LSTM for time-series prediction: an application to weather forecasting. Neural Netw. 125, 1–9 (2020)

    Article  Google Scholar 

  26. Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNS for time series classification. Neural Netw. 116, 237–245 (2019)

    Article  Google Scholar 

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  28. Lea, C., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks: a unified approach to action segmentation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 47–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_7

    Chapter  Google Scholar 

  29. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  30. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

  31. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677 (2015)

  32. Major, P., Thiele, E.A.: Seizures in children: laboratory. Pediatr. Rev. 28(11), 405 (2007)

    Article  Google Scholar 

  33. Malhotra, P., TV, V., Vig, L., Agarwal, P., Shroff, G.: Timenet: pre-trained deep recurrent neural network for time series classification. arXiv preprint arXiv:1706.08838 (2017)

  34. Olszewski, R.T.: Bobski’s world (2012). http://www.cs.cmu.edu/bobski/

  35. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318. PMLR (2013)

    Google Scholar 

  36. Sagheer, A., Kotb, M.: Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 323, 203–213 (2019)

    Article  Google Scholar 

  37. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  38. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  39. Siami-Namini, S., Tavakoli, N., Namin, A.S.: A comparison of ARIMA and LSTM in forecasting time series. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1394–1401. IEEE (2018)

    Google Scholar 

  40. Yang, C., Jiang, W., Guo, Z.: Time series data classification based on dual path CNN-RNN cascade network. IEEE Access 7, 155304–155312 (2019)

    Article  Google Scholar 

  41. Yoon, H., Shahabi, C.: Feature subset selection on multivariate time series with extremely large spatial features. In: Sixth IEEE International Conference on Data Mining-Workshops (ICDMW 2006), pp. 337–342. IEEE (2006)

    Google Scholar 

  42. Yoon, J., Jordon, J., van der Schaar, M.: Invase: instance-wise variable selection using neural networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  43. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  44. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08010-9_33

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, C., Wang, X., Yao, L., Jiang, J., Xu, G. (2022). An Explanation Module for Deep Neural Networks Facing Multivariate Time Series Classification. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics