Skip to main content

Exploring Transformers for Intruder Detection in Complex Maritime Environment

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

  • 1856 Accesses

Abstract

The vast expanse of the coastline makes it difficult and expensive to deploy resources for monitoring it for safety from intruders or illegal activities. The advent of very sophisticated cameras and the myriad of object detection techniques applied to the surveillance photos and videos, provides new methods for automation of monitoring. In this paper we present a study on evaluating the various state-of-the-art object detection methods for identifying marine vessels for intruder detection. Particularly, a comparison of anchor-based, anchor-free and transformer-based object detection techniques is presented for intruder detection. Analysis on the suitability of transformer-based methods for intruder detection is also presented, with experiments performed on a combined marine vessels dataset. Our experiments show that CenterNet, an anchor-free, one-stage technique is still the fastest detection method and suited for online surveillance. Whereas the high accuracy of Transformer based methods, such as DETR, work best for offline video based surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, L., Li, B., Qi, L.: Improved YOLOv3 algorithm for ship target detection. In: 2020 39th Chinese Control Conference (CCC), pp. 7288–7293. IEEE

    Google Scholar 

  4. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  5. Huang, H., Sun, D., Wang, R., Zhu, C., Liu, B.: Ship target detection based on improved YOLO network. Math. Probl. Eng. 2020 (2020)

    Google Scholar 

  6. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  7. Marié, V., Béchar, I., Bouchara, F.: Real-time maritime situation awareness based on deep learning with dynamic anchors. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE

    Google Scholar 

  8. Nalamati, M., Sharma, N., Saqib, M., Blumenstein, M.: Automated monitoring in maritime video surveillance system. In: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2020)

    Google Scholar 

  9. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  10. Nikolió, et al.: Multi-radar multi-target tracking algorithm for maritime surveillance at OTH distances. In: 2016 17th International Radar Symposium (IRS), pp. 1–6. IEEE

    Google Scholar 

  11. Prasad, D.K., Prasath, C.K., Rajan, D., Rachmawati, L., Rajabaly, E., Quek, C.: Challenges in video based object detection in maritime scenario using computer vision. arXiv preprint arXiv:1608.01079 (2016)

  12. Prasad, D.K., Rajan, D., Rachmawati, L., Rajabally, E., Quek, C.: Video processing from electro-optical sensors for object detection and tracking in a maritime environment: a survey. IEEE Trans. Intell. Transp. Syst. 18(8), 1993–2016 (2017)

    Article  Google Scholar 

  13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788

    Google Scholar 

  14. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  15. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  17. Schwehr, K.: Vessel tracking using the automatic identification system (AIS) during emergency response: lessons from the Deepwater Horizon incident. Centre for Coastal and Ocean Mapping/Joint Hydrographic Centre, p. 14 (2011)

    Google Scholar 

  18. Shao, Z., Wu, W., Wang, Z., Du, W., Li, C.: SeaShips: a large-scale precisely annotated dataset for ship detection. IEEE Trans. Multimedia 20(10), 2593–2604 (2018)

    Article  Google Scholar 

  19. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  20. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. arXiv preprint arXiv:1911.09070 (2019)

  21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  22. Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided anchoring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2965–2974 (2019)

    Google Scholar 

  23. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412

    Google Scholar 

  24. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  25. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets V2: more deformable, better results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9308–9316

    Google Scholar 

  26. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  27. Zou, Y., Zhao, L., Qin, S., Pan, M., Li, Z.: Ship target detection and identification based on SSD\(\_\)MobilenetV2. In: 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 1676–1680. IEEE (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrunalini Nalamati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nalamati, M., Saqib, M., Sharma, N., Blumenstein, M. (2022). Exploring Transformers for Intruder Detection in Complex Maritime Environment. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics