Skip to main content

A Novel Approach for Reducing Actuators in Soft Continuum Robots and Manipulators

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 6 (RiTA 2021)

Abstract

Soft continuum robots and manipulators are elongated structures that employ several actuators to move and articulate their bodies. The dexterity of these mechanisms is directly related to the number of actuators they employ; a larger number of actuators increase dexterity. However, increasing the number of actuators results in a higher cost, increased complexity, and reduced reliability. This paper presents an approach to reduce the number of required actuators in soft continuum robots or manipulators while maintaining the same level of dexterity. The approach is based on employing fewer actuators in a specific configuration enabling the robot or manipulator to access the same workspace as previously achievable with the conventional models. The presented approach is thought to transform the design methodology of continuum robots and manipulators, thus reducing their cost, and complexity, while improving their reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolachalama, S., Lakshmanan, S.: Continuum robots for manipulation applications: a survey. J. Robot. 2020, 1–19 (2020). https://doi.org/10.1155/2020/4187048

    Article  Google Scholar 

  2. Greer, J.D., Morimoto, T.K., Okamura, A.M., Hawkes, E.W.: A soft, steerable continuum robot that grows via tip extension. Soft Robot. 6(1), 95–108 (2019). https://doi.org/10.1089/soro.2018.0034

    Article  Google Scholar 

  3. Lewis, J.S., Barani, Z., Magana, A.S., Kargar, F.: A Soft Multi-module Manipulator with Variable Stiffness for Minimally Invasive Surgery, pp. 0–31 (2019)

    Google Scholar 

  4. Blumenschein, L.H., Gan, L.T., Fan, J.A., Okamura, A.M., Hawkes, E.W.: A tip-extending soft robot enables reconfigurable and deployable antennas. IEEE Robot. Autom. Lett. 3(2), 949–956 (2018). https://doi.org/10.1109/LRA.2018.2793303

    Article  Google Scholar 

  5. Tokunaga, T., Oka, K., Harada, A.: 1segment continuum manipulator for automatic harvesting robot - prototype and modeling. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA 2017), pp. 1655–1659 (2017). https://doi.org/10.1109/ICMA.2017.8016065

  6. Shoani, M.T., Ribuan, M.N., Faudzi, A.A.M.: Characteristics of a tendon driven soft gate for canal flow regulation. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2020), vol. 2020, pp. 163–168. https://doi.org/10.1109/AIM43001.2020.9158958

  7. Geng, S., Wang, Y., Wang, C., Kang, R.: A space tendon-driven continuum robot. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10942, pp. 25–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93818-9_3

    Chapter  Google Scholar 

  8. Hawkes, E.W., Blumenschein, L.H., Greer, J.D., Okamura, A.M.: A soft robot that navigates its environment through growth. Sci. Robot. 2(8), 1–8 (2017). https://doi.org/10.1126/scirobotics.aan3028

    Article  Google Scholar 

  9. Zhang, K., Qiu, C., Dai, J.S.: An extensible continuum robot with integrated origami parallel modules. J. Mech. Robot. 8(3) (2016). https://doi.org/10.1115/1.4031808

  10. Bieze, T.M., Kruszewski, A., Carrez, B., Duriez, C.: Design, implementation, and control of a deformable manipulator robot based on a compliant spine. Int. J. Robot. Res. 39(14), 1604–1619 (2020)

    Article  Google Scholar 

  11. Ha, J., Park, F.C., Dupont, P.E.: Optimizing tube precurvature to enhance the elastic stability of concentric tube robots. IEEE Trans. Robot. 33(1), 22–37 (2017). https://doi.org/10.1109/TRO.2016.2622278

    Article  Google Scholar 

  12. Zhu, J., Wang, H., Chen, W., Xie, L.: The three-dimensional shape control for a soft robot. In: IEEE International Conference Control Automation (ICCA), pp. 385–390 (2017). https://doi.org/10.1109/ICCA.2017.8003091

  13. Li, Y., Ren, T., Chen, Y., Chen, M.Z.Q., Member, S.: A Variable Stiffness Soft Continuum Robot Based on Pre-charged Air, Particle Jamming, and Origami, pp. 5869–5875 (2020)

    Google Scholar 

  14. Marchese, A.D., Katzschmann, R.K., Rus, D.: A recipe for soft fluidic elastomer robots. Soft Robot. 2(1), 7–25 (2015). https://doi.org/10.1089/soro.2014.0022

    Article  Google Scholar 

  15. Santoso, J., Onal, C.D.: An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body and Smooth, pp. 1–16 (2020). https://doi.org/10.1089/soro.2020.0026

  16. Mishra, A.K., Del Dottore, E., Sadeghi, A., Mondini, A., Mazzolai, B.: SIMBA: tendon-driven modular continuum arm with soft reconfigurable gripper. Front. Robot. AI 4, 1–10 (2017). https://doi.org/10.3389/frobt.2017.00004

    Article  Google Scholar 

  17. Wang, H., Gao, G.H., Xia, Q., Ren, H., Li, L.S., Zheng, Y.: Accuracy estimation of a stretch-retractable single section continuum manipulator based on inverse kinematics. Ind. Rob. 46(5), 573–580 (2019). https://doi.org/10.1108/IR-06-2018-0122

    Article  Google Scholar 

  18. She, Y., Chen, J., Shi, H., Su, H.J.: Modeling and validation of a novel bending actuator for soft robotics applications. Soft Robot. 3(2), 71–81 (2016). https://doi.org/10.1089/soro.2015.0022

    Article  Google Scholar 

  19. Shoani, M.T., Ribuan, M.N., Faudzi, A.A.M.: Design and analysis of a vertically suspended soft manipulator. In: Chew, E., Abdul, A.P.P., Majeed, P.L., Platts, J., Myung, H., Kim, J., Kim, J.-H. (eds.) RiTA 2020: Proceedings of the 8th International Conference on Robot Intelligence Technology and Applications, pp. 232–241. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-4803-8_24

    Chapter  Google Scholar 

  20. Cheng, C., Cheng, J., Huang, W.: Design and development of a novel SMA actuated multi-DOF soft robot. IEEE Access 7, 75073–75080 (2019). https://doi.org/10.1109/ACCESS.2019.2920632

    Article  Google Scholar 

  21. Goergen, Y., Rizzello, G., Seelecke, S., Motzki, P.: Modular Design of an SMA Driven Continuum Robot, September 2020. https://doi.org/10.1115/smasis2020-2213

  22. Faudzi, A.A.M., Lazim, N.H.I.M., Suzumori, K.: Modeling and force control of thin soft McKibben actuator. Int. J. Autom. Technol. 10(4), 487–493 (2016). https://doi.org/10.20965/ijat.2016.p0487

    Article  Google Scholar 

  23. Faudzi, A.A., Azmi, N.I., Sayahkarajy, M., Xuan, W.L., Suzumori, K.: Soft manipulator using thin McKibben actuator. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), vol. 2018, pp. 334–339 (2018). https://doi.org/10.1109/AIM.2018.8452698

  24. Zhang, J., et al.: Robotic artificial muscles: current progress and future perspectives. IEEE Trans. Robot. 35(3), 761–781 (2019). https://doi.org/10.1109/TRO.2019.2894371

    Article  Google Scholar 

  25. Xing, Z., Zhang, J., McCoul, D., Cui, Y., Sun, L., Zhao, J.: A super-lightweight and soft manipulator driven by dielectric elastomers. Soft Robot. 7(4), 512–520 (2020). https://doi.org/10.1089/soro.2018.0134

    Article  Google Scholar 

  26. Zhang, Z., Dequidt, J., Back, J., Liu, H., Duriez, C.: Motion control of cable-driven continuum catheter robot through contacts. IEEE Robot. Autom. Lett. 4(2), 1852–1859 (2019). https://doi.org/10.1109/LRA.2019.2898047

    Article  Google Scholar 

  27. Visentin, F., Mishra, A.K., Naselli, G.A., Mazzolai, B.: Simplified Sensing and Control of a Plant-Inspired Cable Driven Manipulator, pp. 2–7 (2019)

    Google Scholar 

  28. Yang, H.D., Asbeck, A.T.: Design and characterization of a modular hybrid continuum robotic manipulator. IEEE/ASME Trans. Mechatron. 25(6), 2812–2823 (2020). https://doi.org/10.1109/TMECH.2020.2993543

    Article  Google Scholar 

  29. Li, Z., Yu, H., Ren, H., Chiu, P.W.Y., Du, R.: A novel constrained tendon-driven serpentine manipulator. IEEE International Conference on Intelligent Robots and Systems, vol. 2015, pp. 5966–5971 (2015). https://doi.org/10.1109/IROS.2015.7354226

  30. Bhattacherjee, S., et al.: Kinematics and teleoperation of tendon driven continuum robot. Proc. Comput. Sci. 133, 879–886 (2018). https://doi.org/10.1016/j.procs.2018.07.106

    Article  Google Scholar 

  31. Nahar, D., Yanik, P.M., Walker, I.D.: Robot tendrils: long, thin continuum robots for inspection in space operations. IEEE Aerosp. Conf. Proc. (2017). https://doi.org/10.1109/AERO.2017.7943940

    Article  Google Scholar 

  32. Coulson, R., Robinson, M., Kirkpatrick, M., Berg, D.R.: Design and preliminary testing of a continuum assistive robotic manipulator. Robotics 8(4), 84 (2019). https://doi.org/10.3390/robotics8040084

    Article  Google Scholar 

  33. Batsuren, K., Yun, D.: Soft robotic gripper with chambered fingers for performing in-hand manipulation. Appl. Sci. 9(15), 2967 (2019). https://doi.org/10.3390/app9152967

    Article  Google Scholar 

  34. Hainsworth, T., Smith, L., Alexander, S., Maccurdy, R.: A fabrication free, 3D printed, multi-material. Self-Sens. Soft Actuat. 5(3), 4118–4125 (2020)

    Google Scholar 

Download references

Acknowledgement

This research has been carried out under the Research Excellence Consortium (JPT (BPKI) 1000/016/018/25 (57)) from the Ministry of Higher Education Malaysia (MOHE). The authors would also like to acknowledge the support from Universiti Teknologi Malaysia (UTM) vote no (4L930) for providing facilities for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Athif Mohd Faudzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shoani, M.T., Ribuan, M.N., Faudzi, A.A.M. (2022). A Novel Approach for Reducing Actuators in Soft Continuum Robots and Manipulators. In: Kim, J., et al. Robot Intelligence Technology and Applications 6. RiTA 2021. Lecture Notes in Networks and Systems, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-97672-9_16

Download citation

Publish with us

Policies and ethics