Skip to main content

Design of Foothold Decision Model in Convex Model Predictive Control for Legged Robots

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 6 (RiTA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 429))

  • 1806 Accesses

Abstract

This paper proposes a control framework for optimizing both ground reaction forces and new footholds in real-time through a model predictive control technique by parameterizing the foot position while constructing dynamics of a 3-dimensional single rigid body model. The method could substitute the conventional foothold controller based on linear inverted pendulum model such as capture point and be applied to balance dynamic locomotion of a robot on non-flat terrains. Furthermore, the controller is verified in various simulation environments, where foothold optimization is crucial

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borrelli, F., Bemporad, A., Morari, M.: Predictive Control for Linear and Hybrid Systems. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  2. Diedam, H., et al.: Online walking gait generation with adaptive foot positioning through linear model predictive control. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2008)

    Google Scholar 

  3. Neunert, M., et al.: Whole-body nonlinear model predictive control through contacts for quadrupeds. IEEE Robot. Autom. Lett. 3(3), 1458–1465 (2018)

    Google Scholar 

  4. Raibert, M.H.: Legged Robots that Balance. MIT Press, Cambridge (1986)

    Google Scholar 

  5. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots. IEEE (2006)

    Google Scholar 

  6. Kajita, S., et al.: Biped walking pattern generation by using preview control of zero-moment point. In: 2003 IEEE ICRA, vol. 2. IEEE (2003)

    Google Scholar 

  7. Diedam, H., Dimitrov, D., Wieber, P.B., Mombaur, K., Diehl, M.: Online walking gait generation with adaptive foot positioning through linear model predictive control. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2008)

    Google Scholar 

  8. Bledt, G., Wensing, P.M., Kim, S.: Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2017)

    Google Scholar 

  9. Hong, S., Kim, J.-H., Park, H.-W.: Real-time constrained nonlinear model predictive control on SO (3) for dynamic legged locomotion (2020)

    Google Scholar 

  10. Ding, Y., Pandala, A., Li, C., Shin, Y.-H., Park, H.-W.: Representation-free model predictive control for dynamic motions in quadrupeds. IEEE Trans. Robot. 37(4), 1154–1171 (2021)

    Article  Google Scholar 

  11. Di Carlo, J., Wensing, P.M., Katz, B., Bledt, G., Kim, S.: Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2018)

    Google Scholar 

  12. Wu, G., Sreenath, K.: Variation-based linearization of nonlinear systems evolving on \( SO (3) \) and \(\mathbb{S}^{2} \). IEEE Access 3, 1592–1604 (2015)

    Article  Google Scholar 

  13. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: On-manifold preintegration for real-time visual-inertial odometry. IEEE Trans. Robot. 33(1), 1–21 (2016)

    Article  Google Scholar 

  14. Chignoli, M., Wensing, P.M.: Variational-based optimal control of underactuated balancing for dynamic quadrupeds. IEEE Access 8, 49785–49797 (2020)

    Article  Google Scholar 

  15. Kim, J.-H., et al.: Legged robot state estimation with dynamic contact event information. IEEE Robot. Autom. Lett. 6(4), 6733–6740 (2021)

    Article  Google Scholar 

  16. Pandala, A.G., Ding, Y., Park, H.: qpSWIFT: a real-time sparse quadratic program solver for robotic applications. IEEE Robot. Autom. Lett. 4(4), 3355–3362 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, MG., Hong, S., Kim, JH., Park, HW. (2022). Design of Foothold Decision Model in Convex Model Predictive Control for Legged Robots. In: Kim, J., et al. Robot Intelligence Technology and Applications 6. RiTA 2021. Lecture Notes in Networks and Systems, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-97672-9_3

Download citation

Publish with us

Policies and ethics