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Abstract. The Sequential Monte Carlo Probability Hypothesis Density
(SMC-PHD) filter is a permissive multi-target tracker, performing state
estimation through particle filtering with implicit data association. This
filter is thus effective even in presence of clutter and nonlinear dynamics,
while remaining tractable for real-time applications due to its computa-
tionally efficient data association process. Sensors are sometimes capable
of sensing target features, which add up to kinematic measurements, e.g.
range and bearing.
In this paper, the adaptive Feature-Aided-SMC-PHD filter is designed,
making use of feature information to increase the SMC-PHD’s estimation
performance with respect to clutter, detection probability and location
precision. As suspected, further differentiating targets from clutter led to
greater sample degeneracy, especially as the detection probability drops.
An adaptive sampling scheme was hence developed in order to relax this
phenomenon. A radar application is considered in this study to validate
this paper’s approach using Monte Carlo simulations.

Keywords: multi-target tracking, feature-aided tracking, particle filter,
probability hypothesis density, SMC-PHD, degeneracy

1 Introduction

In Multi-Target Tracking (MTT), sensor and detection algorithm qualities (pre-
cision, false alarm rate, etc.) can affect the simultaneous estimation of the num-
ber and states of targets. In particular, MTT is a key technology for sports player
tracking [1] or drone surveillance [2], albeit those applications may imply erratic
target motions and cluttered measurements.

As part of MTT, a data association algorithm, associating measurements to
tracks, can identify targets from clutter. Instead of deterministically selecting
the measurements to use for state estimation, probabilistic association is often
more effective [3]. For intance, Multiple Hypothesis Trackers (MHT) yield good
performance by considering all possible associations, leading combinatorial ex-
plosion though. This is mitigated in the Joint Probabillistic Data Association
(JPDA) filter (and its many variants) which considers only a time step’s hy-
potheses. Using JPDA, targets tend to coalesce. Rather than evaluating possible
hypotheses, Probability Hypothesis Density (PHD) filters are computationally



efficient in that they fuse all observations at once without requiring target label-
ing. This also explains a certain clutter-resilience. Additionally, SMC-PHD filter
is compliant with nonlinear target dynamics. This framework is hence well suited
to the challenging tracking conditions considered in this paper [4], namely highly
nonlinear target dynamics, arbitrary multi-target distribution, clutter and low
detection probabilities.

The main contribution of this paper is a set of implementation guidelines to
supplement the canonical SMC-PHD filter with target feature observations in
order to increase both tracking performance and persistence. We augment the
posterior’s PHD and the likelihood, and mitigate the arising degeneracy issue
by introducing a feature-aided adaptive sampling mechanism, thereby improving
track persistence.

In this paper, related work is reviewed in section 2. Section 3 contains back-
ground knowledge and problem formulation. In section 4 we present a strategy
for augmenting the SMC-PHD filter with target features and highlight the oc-
currence of degeneracy in critical conditions. As a consequence, an adaptive
sampling scheme is proposed in section 5. Filter performance is evaluated and
discussed through numerical simulations in section 6.

2 Related work

2.1 Feature-aided data association

Integrating target features into data association often results in better track-
ing performance. A target feature can be a signature (target-inherent) or some
measurable parameter related to the target or its behaviour [5].

The Signal-to-Noise Ratio (SNR) was used to refine JPDA’s association prob-
ability in [6, 7] in order to better differentiate targets from clutter. In passive
sonar applications, [8] proposed a gating process based on bearing and frequency
attributes. Unlike in [6], this modification alleviates track coalescence rather than
clutter. JPDA is from far the most common technique for feature-aided data as-
sociation, as will testify the use of High Resolution Range (HRR) [9] or wavelets
feature extraction [10] in radar applications. In these examples, feature and kine-
matic measurements are independent. Instead of increasing the dimension of the
state vector, features are used separately as a way to identify, probabilistically,
targets from clutter and other targets. The state estimator runs independently
and would require another strategy to include target features.

Leveraging target doppler and down-range extent measurements, the Feature-
Aided Gaussian Mixture PHD filter (GM-PHD) in [11] outperformed the canon-
ical one: using features to associate tracks from an iteration to another. GM-
PHD’s update generates as many additional Gaussian components as there are
measurements, leading to pruning and merging routines [12]. GM-PHD’s 2D-
assignment process (post-data association) has hence a greater impact on the
overall state estimation process than the SMC-PHD’s. SMC-PHD does not need
this assignment step for state estimation, although this might help to produce a
better sampling algorithm.



Feature extraction remains nonetheless very challenging; [13] warns on possi-
ble sudden variations. Mechanical vibrations or rotations induce frequency mod-
ulation for instance, which can fool a frequency-based data associator.

2.2 Target loss in particle PHD filters

Although SMC-PHD filters perform well in cluttered environments [14], esti-
mating the multi-target posterior density with a weighted particle set is prone
to sample degeneracy and impoverishment [14–16]. The former occurs when a
few particles concentrate most of the weight (distribution with sharp peaks and
negligible weights elsewhere), often caused by importance sampling. Degeneracy
is typically fought via resampling when the Effective Sample Size (ESS) drops
under a threshold [17]. Dropping too many particles with low weights during
resampling causes particle impoverishment: the filter cannot recover the multi-
target distribution over that region. Theoretical results on the stability of SMC
methods are presented in [18,19].

A particle flow guided by a (stochastic) propagation equation alleviates de-
generacy [15,20]. This method guides the particle distribution towards the pos-
terior thanks to PDEs, this can be expensive to compute and truncation error
or approximations such as local linearity and Gaussianity [20] can jeopardise
the distribution estimation quality. Gaussian Particle Flow Importance Sam-
pling (GPFIS) [21] is an interesting add-on to particle flow filters, an optimal
importance sampling scheme is found to reduce efficiently degeneracy.

Authors of [22] propose an Equivalent-Weights particle filter in which an
additional proposal density enables the weights to remain non-negligible with
respect to each other. Statistical consistency is lost through this process though.

Another trend is using Markov Chain Monte Carlo methods (MCMC) [23,
24], replacing the resampling scheme by an MCMC-based sampling routine: the
challenge lies in identifying effective kernels [25].

3 Problem Formulation

3.1 Multi-target representation and simulation setup

From a set of Nk targets with states Xk = {x̃i
k}

Nk
i=1, a multi-target measurement

set Zk = {z̃jk}
Mk
j=1 of Mk observations (from one sensor) is produced at time-step

k. Targets follow a Markov transition model p(xk|xk−1).
A target’s kinematic state is denoted xk = [x, vx, y, vy, ω]

T , producing a

range r =
√
x2 + y2 and bearing θ = arctan 2(y, x) resulting in the kinematic

observation zk =
[
r, θ

]T
+wk, with a probability of detection pD. The observa-

tion noise wk ∼ N (.; 0; diag([σ2
r , σ

2
θ ]

T )) depends on range and bearing standard
deviations σr and σθ.

The observations z̃jk = [zjk, z
j
fk
] are the concatenation of a kinematic and a

feature measurement. Similarly, a target state is decomposed as x̃i
k = [xi

k,x
i
fk
].



3.2 Target features

We identify two target feature types of interest: those whose measurements differ
significantly when target- or clutter-originated, or those differentiating targets
from each other. Therefore, two features are considered here: the SNR and the
down-range extent (DRE), fulfilling the former and the latter purposes respec-
tively. These features are consistent with a radar application, yet the selection
logic is applicable to other fields.

On one hand, the SNR refers to a ratio between the signal power and the noise
power at a certain location, it is kinematics-independent. We adopt the Rayleigh
model as in [6, 26], and as a result, the probability psnr(a

j
k) for a measurement

with SNR amplitude ajk to be target-originated is given by:

psnr(a
j
k) = 1− ajk. exp

(
−
(ajk)

2

2

)
, ajk ≥ 0 (1)

On the other hand, the DRE can be seen as a target’s depth from the sen-
sor’s point of view: this feature provides additional information on the target
(length) and its motion [5,11]. DRE can help differentiating targets when these
are spatially close from one another.

3.3 Background: SMC-PHD filter and assumptions

The SMC-PHD filter [27] sequentially performs five operations: particle initial-
ization, then prediction, update, resampling and clustering. This filter relies on:

Assumption 1 the targets are independent from one another, each generating
a maximum of one observation per scan;

Assumption 2 clutter and target birth distributions are Poisson and target-
independent, targets survive according to a Bernoulli process.

4 Feature-aided SMC-PHD for increased nonlinearity
and clutter resilience

In this paper, we propose the FA-SMC-PHD filter, leveraging feature observa-
tions in order to increase the tracking performance despite high clutter rates and
nonlinear target dynamics. In this section, two modifications of the update mod-
ule are presented based on features: a refinement of the weights {wi

k|k}
Lk
i=1 of the

posterior’s PHD (associated to Lk particles), and the probabilistic integration
of feature observations into the likelihood gk(zk|xk).

We anticipate two major drawbacks to these changes. Sharpening the peaks
in the multi-target distribution using feature information can cause degeneracy.
For this reason, as the probability of detection decreases, sample impoverishment
is to be expected. Intermediate results are presented in section 6.2. The adaptive
techniques described in section 5 will mitigate these drawbacks.



4.1 Augmenting the PHD of the posterior with feature likelihood

At this stage, we only consider kinematic-independent signature-like target fea-
tures (e.g. SNR), i.e. those from which we can compute the (feature) likelihood
pf (·) that the measurement zjfk was target-generated (by opposition to clutter).

A first approach consists in augmenting the multi-target posterior density
with feature likelihoods. These are designed specifically to reject clutter, particle
weights will decrease proportionally to their likelihood to represent a target.

wi
k|k ← wi

k|k pf (x
i
fk
) (2)

This method requires to distribute the feature measurements’ likelihoods
over to all particles though. To this end we compute an interpolation function
evaluated at the particles’ locations. A multivariate Gaussian mixture model is
proposed here, weighed by the feature likelihoods pf (z

j
fk
) associated to their

mean location zjk and covariance matrix Σ = diag([σ2
r , σ

2
θ ]

T ), evaluated at xi
k.

Remark 1. Due to the scaling factors {pf (xi
fk
)}Lk

i=1, the weights need to be nor-
malized in order for their sum to remain unchanged.

Remark 2. This process cannot thus provide a better cardinality estimation. Ul-
timately, this feature-informed weight refinement causes the least relevant par-
ticles to be removed through resampling, which increases robustness to clutter.

4.2 Feature-aided likelihood

In order to refine the likelihood, we propose to multiply it by the feature likeli-
hood, assuming both are independent from each other:

gk(z̃
j
k|x

i
k) = gk(z

j
k|x

i
k).pf (z

i
fk
) (3)

Thus, the likelihood will drop faster as the measurements are probabilistically
closer to be clutter- than target-originated.

However, the effects of this refined likelihood on the multi-target distribution
are not as straightforward as in section 4.1, the formulation of the posterior’s
PHD in the update operator is strongly nonlinear with respect to the likelihood.

Remark 3. Unlike in the posterior augmentation proposed in section 4.1, nor-
malizing the weights is not necessary, nor need the particles to be attributed
features. Likelihood augmentation is hence computationally more effective and
has the potential of improving cardinality estimation.

5 Adaptive FA-SMC-PHD: an adaptive sampling scheme
to mitigate degeneracy

When a target is misdetected for too many time-steps, the number of particles
tracking it shrinks until a critical size is reached, causing the death of a particle
batch and the loss of a target.



Our contribution to alleviating this degeneracy issue is twofold: exploring
the state-space where lost targets are expected to be located and propagating a
slowly decreasing feature density to these locations (used only as extra sources
for particle feature likelihood interpolation), thus introducing greater inertia
in the filter without affecting cardinality estimation. Each technique involves a
problem-dependent hyperparameter whose value lies in ]0, 1[. The parameters
were tuned using a grid search, although more advanced hyperparameter opti-
mization algorithms could be investigated [28].

5.1 Adaptive importance sampling mechanism

The rationale for this first mitigation proposal is very intuitive as it consists in
exploring the state-space even after losing a target, so its track can be recov-
ered once the target is re-observed. This can be seen as importance sampling
for both the lost and expected tracks. Unbounded exploration would result in
unreasonable computational cost and tracking error though, due to clutter.

In other terms, this adaptive sampling mechanism will use a distribution
represented as the predicted locations and error covariance matrices of the tracks
at time k− 1 and the tracks lost over the last mo time steps. This boils down to
wondering for how long a target can be unobserved, mo should therefore reflect
and limit the risk of degeneracy, depending on the detection probability.

Let M1, . . . ,MnH
be a sequence of iid Bernoulli random variables such that

an observation is missed with probability P(Mk = 1) = 1− pD and is produced
with P(Mk = 0) = pD, according to Assumption 1, and let LnH

be the random
variable associated to the longest success run over a time horizon nH . We param-
eterize mo by the level of risk τ considered acceptable, so that P(LnH

≥ mo) ≤ τ .
A closed form for this probability was given in [29], although for simplicity, only
the probability that a target remains unobserved over the nextmo time steps will
be considered. This probability does not depend on any time horizon (nH = mo)
and is simply given by P(L = mo) = (1− pD)mo , resulting in the suggestion of a
value for mo given the hyperparameter τ (⌊·⌉ being the nearest integer function):

mo =

⌊
log τ

log (1− pD)

⌉
(4)

Although we limit exploration, tracking error is expected to increase as more
of the cluttered area is covered. The next proposal in section 5.2 remedies this.

5.2 Introducing artificial feature measurements

In order for the adaptive sampling mechanism to be truly effective with respect
to tracking error, the filter needs to keep on tracking a target even when it is
not observed.

Introducing artificial kinematic measurements where targets are expected to
be would result in poor state estimation, because some artificial observations
would be wrong and persistent, but more importantly these would modify the
cardinality of the multi-target distribution.



Instead, we propose artificial feature measurements, using their kinematic
counterpart (location) as a label in order for them to be correctly distributed to
the particles. Unlike kinematic measurements feature measurements only mod-
ify the multi-target distribution’s shape, by increasing the weights of particles
of interest and decreasing others. In addition, feature likelihood (alternatively,
feature amplitude) of artificial measurements must decrease over time as these
propagate in order not to create and track ghosts. This also translates the de-
creasing reliability of artificial measurements originated by lost tracks over time.
We hence impose all features from past time steps to decrease with a constant
rate αk, parameterized by the proportion βk−mo:k of the feature likelihood (or
amplitude) remaining after mo time steps, β being a second tuning parameter.

αk = (βk−mo:k)
1

mo (5)

6 Numerical Simulations

6.1 Simulation setup

An extensive study has been pursued, with 100 Monte Carlo runs performed
for each parameter configuration. Similarly to [30], a scenario has been designed
in order to evaluate the filters’ performance with respect to the following re-
quirements. An experiment, scenario running with multi-target estimation per-
formance evaluation, is shown in https://youtu.be/cbgKf4Zpb3I.

– Multiple targets: 5 targets (fixed) with coordinated-turn (CT) dynamics
[31], evolving independently within the sensor’s field of view (FOV);

– Targets crossing: this may induce track coalescence or swapping;
– Nonlinear motions: the targets have different speeds and turn rates, and

highly nonlinear motions, e.g. target maneuvers, have been obtained by
adding a zero-mean Gaussian noise to the trajectories.

The same groundtruth is used for all simulations. The scanning period is
∆T = 1s for a total run-time of 100 time-steps. The transition model is character-
ized by a Gaussian process noise, with σνx

= σνy
= 15m/s2 and σω = 2 π

180rad/s.
We consider a range-and-bearing sensor, typically a radar, centered on the 2D

plane’s origin, and its FOV is defined by a range rmax = 2500m and an azimuth
θmax = π. Radars are known to acquire cluttered measurements, herein assumed
to be uniformly distributed over the FOV (as is the detection probability pD),
modeled as a Poisson Point Process (PPP) with intensity λFA false alarms per
scan, and a surviving probability pS = 1. Measurement noise is characterized
by σr = 10m and σθ = π

180rad, associated to the measurement model in section
3.1. As for the SMC-PHD filter, the birth model of reference is a commonly-used
Poisson point process at the initial targets’ locations.

At each time-step, ρ = 300 new particles are generated per expected target.
Systematic resampling is used, with the roughening strategy proposed in [32] in
order to reduce slightly the risk of sample impoverishment.



For performance evaluation, we use the Optimal Sub-Pattern Assignment
(OSPA) [33], combining state and cardinality error estimations with respect to
the ground truth, with an Euclidean cut-off distance of 100 and a sensitivity of 1.
For cardinality estimation and analysis (exclusively) we use the Single Integrated
Air Picture (SIAP-C) [34].

6.2 Intermediate performance of the FA-SMC-PHD

To begin with, we studied the impact of posterior and likelihood feature-aided
enhancements. The simulation results shown in Figure 1 highlight the difficulty
of the simple FA-SMC-PHD to perform well with highly cluttered measurements.

Fig. 1. Tracking performance (OSPA) with respect to the detection probability (with
λFA = 100) and the clutter rate (with pD = 99%) respectively.

The gain in tracking performance, with respect to the canonical SMC-PHD
filter, as the clutter rate increases, is insignificant (-2% of relative difference).
This intermediate result is somewhat counter-intuitive as the FA-SMC-PHD
filter is indirectly fed with knowledge about the objects it is sensing, whereas
the canonical SMC-PHD has none. In fact, this is a side effect of degeneracy, as
anticipated and explained in section 4. This may also slow down the Monte Carlo
convergence, which would explain the peaks in Figures 1 and 3 in low-cluttered
areas (which are not the primary focus of this study).

The main issue jeopardizing this tracker’s results is the consequence of missed
observations. When introducing feature information, the process of indirectly
lowering the PHD in cluttered regions in favor of target-influenced areas is sig-
nificantly accelerated, as this differentiation is blind in the canonical filter, but
feature-informed in the FA-SMC-PHD. Though not all particles are destroyed
immediatly, there is an obvious lack of intertia within SMC-PHD filters, and this
is particularly true for the FA-SMC-PHD.



Although the FA-SMC-PHD already results in a 7.3% performance increase
with respect to detection probability (Figure 1), systematic target loss can easily
be identified on the left figure, typically around pD ≈ 95%.

6.3 Alleviating degeneracy using the adaptive sampling mechanism

As suggested in Figure 2, the ESS of the FA-SMC-PHD is 15% to 35% below
the SMC-PHD’s, taken as reference, in relative difference. This translates by a
higher potential for degeneracy. Thus the adaptive sampling mechanism improves
the filter’s ESS, which, combined with the enhancements proposed in section 4,
results in comparable ESS levels.

The challenge of alleviating degeneracy in these difficult tracking conditions
is not yet completely overcome. However this issue has been sufficiently mitigated
for the final filter to yield far better performance than the SMC-PHD.

On a side note, the adaptive FA-SMC-PHD is better at estimating the sys-
tem’s cardinality, for low detection probabilities it even tends to overestimate it
whereas the reference filter underestimates it.

Fig. 2. Effective sample size with respect to the detection probability (with λFA = 10)
and the clutter rate (with pD = 99%).

6.4 Adaptive FA-SMC-PHD performance assessment

The final adaptive FA-SMC-PHD filter outperforms the canonical SMC-PHD
filter for high clutter rates (λFA ≥ 50), with a 14.4% increase in tracking ac-
curacy. When the level of clutter is low, the SMC-PHD performs better; this is
caused by the adaptive sampling mechanism exploring more of the state-space
than necessary. This study focuses on cases where the clutter rate is high though.

Furthermore, although this cannot be shown here due to paper length limit,
the adaptive FA-SMC-PHD filter’s ability to handle missed detection gained an



Fig. 3. Clutter resilience assessment: tracking performance with respect to the clutter
rate (with pD = 99%).

average 7.3% in state estimation performance. Moreover, the reliability also in-
creased, as the standard deviation of the OSPA with respect to clutter decreased
by 33.8%. Taking the absolute cardinality estimation error, the proposed algo-
rithm was 50.4% better at estimating the number of targets within the FOV.

7 Conclusions

In this paper, an adaptive FA-SMC-PHD filter was proposed, providing a sig-
nificant increase in clutter resilience, despite the canonical SMC-PHD’s natural
effectiveness in this regard. In extreme conditions, cardinality estimation perfor-
mance was also greatly improved, together with reliability.

Moreover, by decomposing the particle-PHD filter in atomic components,
identifying opportunities for sensor feature information to be integrated, and
analyzing the effect of the multiple enhancement combinations on state esti-
mation performance, cardinality estimate, track coalescence and swapping, and
degeneracy, we shed light on SMC-PHD’s main flaws. In particular, the de-
generacy issue is problematic in this filter; not because of the classical sample
impoverishment in particle filters, but due to a lack of data when resampling,
and eventually updating. We proposed a way to limit the risk of degeneracy by
introducing inertia through feature propagation and adaptive sampling. Generic
methods have been given, then applied, allowing future studies to design upon
such a tracker.

Future work will focus on better handling this filter’s degeneracy and further
develop the approaches mentioned in this paper, the adaptive sampling scheme
in particular. Therefore more Monte Carlo experiments will also be carried out.
These enhancement proposals, which are not domain-specific by design, will be
assessed upon other benchmarks (e.g. [31]), and confronted to filters fulfilling
similar purposes such as a feature-aided GM-PHD or particle flow SMC-PHD
filter, in order to validate the generalizability of these methods.
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