Skip to main content

Feature-Aided SMC-PHD Filter for Nonlinear Multi-target Tracking in Cluttered Environments

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 6 (RiTA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 429))

Abstract

The Sequential Monte Carlo Probability Hypothesis Density (SMC-PHD) filter is a permissive multi-target tracker, performing state estimation through particle filtering with implicit data association. This filter is thus effective even in presence of clutter and nonlinear dynamics, while remaining tractable for real-time applications due to its computationally efficient data association process. Sensors are sometimes capable of sensing target features, which add up to kinematic measurements, e.g. range and bearing.

In this paper, the adaptive Feature-Aided-SMC-PHD filter is designed, making use of feature information to increase the SMC-PHD’s estimation performance with respect to clutter, detection probability and location precision. As suspected, further differentiating targets from clutter led to greater sample degeneracy, especially as the detection probability drops. An adaptive sampling scheme was hence developed in order to relax this phenomenon. A radar application is considered in this study to validate this paper’s approach using Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manafifard, M., Ebadi, H., Moghaddam, H.A.: A survey on player tracking in soccer videos. Comput. Vis. Image Underst. 159, 19–46 (2017)

    Article  Google Scholar 

  2. Guvenc, I., Koohifar, F., Singh, S., Sichitiu, M.L., Matolak, D.: Detection, tracking, and interdiction for amateur drones. IEEE Commun. Mag. 56(4), 75–81 (2018)

    Article  Google Scholar 

  3. He, S., Shin, H.-S., Shuoyuan, X., Tsourdos, A.: Distributed estimation over a low-cost sensor network: a review of state-of-the-art. Inf. Fusion 54, 21–43 (2020)

    Article  Google Scholar 

  4. Vo, B.-N., Singh, S., Doucet, A.: Sequential monte Carlo implementation of the PHD filter for multi-target tracking. In: Sixth International Conference of Information Fusion, 2003 (2005)

    Google Scholar 

  5. Wang, X., La Scala, B., Ellem, R.: Feature aided probabilistic data association for multi-target tracking. In: 2008 11th International Conference on Information Fusion (2008)

    Google Scholar 

  6. He, S., Shin, H.-S., Tsourdos, A.: Multi-sensor multi-target tracking using domain knowledge and clustering. IEEE Sens. J. PP, 1–1 (2018)

    Google Scholar 

  7. He, S., Shin, H.-S., Tsourdos, A.: Joint probabilistic data association filter with unknown detection probability and clutter rate. Sensors 18(1), 269 (2018)

    Article  Google Scholar 

  8. Pace, D.W., Mallick, M., Eldredge, W.: Spectral feature-aided multi-target multi-sensor passive sonar tracking. In: Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No. 03CH37492) (2003)

    Google Scholar 

  9. Ruan, Y., Hong, L.: Feature-aided tracking with GMTI and HRR measurements via mixture density estimation. In: IEE Proceedings - Control Theory and Applications, vol. 153 (2006)

    Google Scholar 

  10. Hong, L., Cui, N., Pronobis, M.T., Scott, S.: Simultaneous ground moving target tracking and identification using wavelets features from HRR data. Inf. Sci. 162(3–4), 249–274 (2004)

    Article  MathSciNet  Google Scholar 

  11. Ying, C., Zhen, C., Shuliang, W.: Feature aided gaussian mixture probability hypothesis density filter with modified 2D assignment. In: Proceedings of 2011 IEEE CIE International Conference on Radar (2011)

    Google Scholar 

  12. Clark, D., Panta, K.: The GM-PHD filter multiple target tracker. In: 2006 9th International Conference on Information Fusion (2006)

    Google Scholar 

  13. Zheng, L., Wang, X.: Improved NN-JPDAF for joint multiple target tracking and feature extraction. In: 2019 IEEE Radar Conference (RadarConf) (2017)

    Google Scholar 

  14. Kılıç, V., Barnard, M., Wang, W., Hilton, A., Kittler, J.: Mean-shift and sparse sampling-based SMC-PHD filtering for audio informed visual speaker tracking. IEEE Trans. Multimedia 18(12), 2417–2431 (2016)

    Article  Google Scholar 

  15. Liu, Y., Hilton, A., Chambers, J., Zhao, Y., Wang, W.: Non-zero diffusion particle flow SMC-PHD filter for audio-visual multi-speaker tracking. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4304–4308 (2018)

    Google Scholar 

  16. Wang, X., Li, T., Sun, S., Corchado, J.M.: A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sensors 17(12), 2707 (2017)

    Article  Google Scholar 

  17. Li, T., Sun, S., Sattar, T.P., Corchado, J.M.: Fight sample degeneracy and impoverishment in particle filters: a review of intelligent approaches. Expert Syst. Appl. 41(8), 3944–3954 (2014)

    Article  Google Scholar 

  18. Beskos, A., Crisan, D., Jasra, A.: On the stability of sequential Monte Carlo methods in high dimensions. Ann. Appl. Probab. 24(4), 1396–1445 (2014)

    Article  MathSciNet  Google Scholar 

  19. Finke, A., Doucet, A., Johansen, A.M.: Limit theorems for sequential MCMC methods. Adv. Appl. Probab. 52(2), 377–403 (2020)

    Article  MathSciNet  Google Scholar 

  20. Daum, F., Huang, J.: Particle flow for nonlinear filters. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5920–5923. IEEE (2011)

    Google Scholar 

  21. Bunch, P., Godsill, S.: Approximations of the optimal importance density using Gaussian particle flow importance sampling. J. Am. Stat. Assoc. 111(514), 748–762 (2016)

    Article  MathSciNet  Google Scholar 

  22. Ades, M., Van Leeuwen, P.J.: The equivalent-weights particle filter in a high-dimensional system. Q. J. R. Meteorol. Soc. 141(687), 484–503 (2015)

    Article  Google Scholar 

  23. Septier, F., Peters, G.W.: Langevin and Hamiltonian based sequential MCMC for efficient Bayesian filtering in high-dimensional spaces. IEEE J. Sel. Topics Signal Process. 10(2), 312–327 (2015)

    Article  Google Scholar 

  24. Brockwell, A., Del Moral, P., Doucet, A.: Sequentially interacting Markov chain monte Carlo methods. Ann. Stat. 38(6), 3387–3411 (2010)

    Article  MathSciNet  Google Scholar 

  25. Li, Y., Coates, M.: Particle filtering with invertible particle flow. IEEE Trans. Signal Process. 65(15), 4102–4116 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lerro, D., Bar-Shalom, Y.: Automated tracking with target amplitude information. In: Proceeding of American Control Conference, San Diego, 1990, pp. 2875–2880 (1990)

    Google Scholar 

  27. Vo, B.-N., Singh, S., Doucet, A.: Sequential Monte Carlo implementation of the PHD filter for multi-target tracking. In: 2003 Proceedings of the Sixth International Conference of Information Fusion, 2003, Cairns, Queensland, Australia, pp. 792–799 (2003)

    Google Scholar 

  28. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. In: International Conference on Machine Learning, pp. 1437–1446. PMLR (2018)

    Google Scholar 

  29. Bateman, G.: On the power function of the longest run as a test for randomness in a sequence of alternatives. Biometrika 35(1/2), 97–112 (1948)

    Article  MathSciNet  Google Scholar 

  30. Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: 17th International Conference on Information Fusion (FUSION), pp. 1–8. IEEE (2014)

    Google Scholar 

  31. Gadsden, A., Habibi, S., Dunne, D., Kirubarajan, T.: Nonlinear estimation techniques applied on target tracking problems (2012)

    Google Scholar 

  32. Li, T., Corchado, J.M., Sun, S., Fan, H.: Multi-EAP: extended EAP for multi-estimate extraction for SMC-PHD filter. Chin. J. Aeronaut. 30, 368–379 (2016)

    Google Scholar 

  33. Schuhmacher, D., Vo, B.-T., Vo, B.-N.: A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 56, 3447–3457 (2008)

    Google Scholar 

  34. Votruba, P., Nisley, R., Rothrock, R., Zombro, B.: Single integrated air picture (SIAP) metrics implementation, Technical report, Single integrated air picture system engineering task force Arlington VA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Delabeye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delabeye, R., Shin, HS., Inalhan, G. (2022). Feature-Aided SMC-PHD Filter for Nonlinear Multi-target Tracking in Cluttered Environments. In: Kim, J., et al. Robot Intelligence Technology and Applications 6. RiTA 2021. Lecture Notes in Networks and Systems, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-97672-9_31

Download citation

Publish with us

Policies and ethics