Skip to main content

Hand Gesture and Arm Movement Recognition for Multimodal Control of a 3-DOF Helicopter

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 6 (RiTA 2021)

Abstract

This paper presents the application of hand gestures and arm movements to control a dual rotor testbench. A multimodal control method is developed for a 3-degrees-of-freedom (DOF) tandem helicopter based on surface electromyography sensors and an inertial measurement unit (IMU) included in the Myo Armband sensor. The recognition system can classify five different hand gestures which are used for switching between flight modes and generating set point values for the helicopter. The 3-DOF helicopter testbench is fully designed and implemented as a low cost alternative for assessing the effectiveness of flight controls for unmanned aerial vehicles. The position of the helicopter is regulated by a cascade-dual-PID control scheme that allows a fast switching between a gesture mode and an IMU mode. Experimental results show the effectiveness of using hand gesture recognition and arm movement for controlling an aerial test bench with a fast and accurate response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonius, R., Tjahyadi, H.: Electromyography gesture identification using CNN-RNN neural network for controlling quadcopters. In: Journal of Physics: Conference Series, vol. 1858, p. 012075. IOP Publishing (2021)

    Google Scholar 

  2. Barona López, L.I., et al.: An energy-based method for orientation correction of EMG bracelet sensors in hand gesture recognition systems. Sensors 20(21), 6327 (2020)

    Article  Google Scholar 

  3. Benalcazar, M.E., Barona, L., Valdivieso, L., Aguas, X., Zea, J.: EMG-EPN-612 dataset, November 2020. https://doi.org/10.5281/ZENODO.4023305. https://laboratorio-ia.epn.edu.ec/en/resources/dataset/2020_emg_dataset_612

  4. Benalcázar, M.E., Jaramillo, A.G., Zea, A., Páez, A., Andaluz, V.H., et al.: Hand gesture recognition using machine learning and the Myo armband. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1040–1044. IEEE (2017)

    Google Scholar 

  5. Choudhary, S.K.: Negative imaginary feedback control for a 3-DOF helicopter system. In: 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), pp. 1–6. IEEE (2019)

    Google Scholar 

  6. Jiang, D., et al.: Gesture recognition based on binocular vision. Clust. Comput. 22(6), 13261–13271 (2018). https://doi.org/10.1007/s10586-018-1844-5

    Article  Google Scholar 

  7. Jiang, S., et al.: Feasibility of wrist-worn, real-time hand, and surface gesture recognition via sEMG and IMU sensing. IEEE Trans. Ind. Inform. 14(8), 3376–3385 (2017)

    Article  Google Scholar 

  8. Kim, M., Cho, J., Lee, S., Jung, Y.: IMU sensor-based hand gesture recognition for human-machine interfaces. Sensors 19(18), 3827 (2019)

    Article  Google Scholar 

  9. Ma, Y., et al.: Hand gesture recognition with convolutional neural networks for the multimodal UAV control. In: 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), pp. 198–203. IEEE (2017)

    Google Scholar 

  10. Nuzzi, C., Pasinetti, S., Lancini, M., Docchio, F., Sansoni, G.: Deep learning based machine vision: first steps towards a hand gesture recognition set up for collaborative robots. In: 2018 Workshop on Metrology for Industry 4.0 and IoT, pp. 28–33. IEEE (2018)

    Google Scholar 

  11. OYMotion: Gforcepro + EMG armband. http://www.oymotion.com/en/product32/149

  12. Park, J.S., Na, H.J.: Front-end of vehicle-embedded speech recognition for voice-driven multi-UAVs control. Appl. Sci. 10(19), 6876 (2020)

    Article  Google Scholar 

  13. Pérez-Ventura, U., Fridman, L., Capello, E., Punta, E.: Fault tolerant control based on continuous twisting algorithms of a 3-DOF helicopter prototype. Control Eng. Pract. 101, 104486 (2020)

    Google Scholar 

  14. Schreck, B., Gross, L.: Gesture controlled UAV proposal. In: Web. mit. edu., vol. 29 (2014)

    Google Scholar 

  15. Visconti, P., Gaetani, F., Zappatore, G., Primiceri, P., et al.: Technical features and functionalities of Myo armband: an overview on related literature and advanced applications of myoelectric armbands mainly focused on arm prostheses. Int. J. Smart Sens. Intell. Syst 11(1), 1–25 (2018)

    Google Scholar 

  16. Wen, F., et al.: Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7(14), 2000261 (2020)

    Article  Google Scholar 

  17. Yang, L., Chen, J., Zhu, W.: Dynamic hand gesture recognition based on a leap motion controller and two-layer bidirectional recurrent neural network. Sensors 20(7), 2106 (2020)

    Article  Google Scholar 

  18. Zea, J.A., Benalcázar, M.E.: Real-time hand gesture recognition: a long short-term memory approach with electromyography. In: Nummenmaa, J., Pérez-González, F., Domenech-Lega, B., Vaunat, J., Oscar Fernández-Peña, F. (eds.) CSEI 2019. AISC, vol. 1078, pp. 155–167. Springer, Cham (2020) . https://doi.org/10.1007/978-3-030-33614-1_11

Download references

Acknowledgment

The authors gratefully acknowledge the financial support provided by the Escuela Politécnica Nacional (EPN) for the development of the research project “PIGR-19-07 Reconocimiento de gestos de la mano usando señales electromio- gráficas e inteligencia artificial y su aplicación para la implementación de interfaces humano-máquina y humano-humano”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romero, R. et al. (2022). Hand Gesture and Arm Movement Recognition for Multimodal Control of a 3-DOF Helicopter. In: Kim, J., et al. Robot Intelligence Technology and Applications 6. RiTA 2021. Lecture Notes in Networks and Systems, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-97672-9_32

Download citation

Publish with us

Policies and ethics