Skip to main content

Efficient Online Service Based on Go-Tensorflow in the Middle-Station Scenario of Grid Service

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

  • 1118 Accesses

Abstract

The application of machine learning and deep learning is widely used in the business of the power grid. However, the business of the power grid is complicated, and the online service of deep learning faces greater performance challenges. In order to solve this problem, this paper proposes an online service EOSP based on go-tensorflow. EOSP service is divided into 3 modules, namely model configuration module, execution engine module and model management module. The model configuration module mainly includes functions such as online model configuration and model configuration information synchronization. The execution engine can execute graphical model calls, and has optimized performance based on the characteristics of golang language coroutines. The model management module is responsible for model registration, update, uninstallation and version management. Experiments show that the EOSP service is highly stable, which greatly reduces the time consumption of online services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann, Cambridge (2017)

    MATH  Google Scholar 

  2. Marsland, S.: Machine Learning: An Algorithmic Perspective, 2nd edn., p. 2014. CRC Press, Boca Raton (2015)

    Google Scholar 

  3. Anonymous: Machine learning. Machine Learning (1986)

    Google Scholar 

  4. Jianya, G., Shunping, J.: Photogrammetry and deep learning. Ce Hui Xue Bao 47(6), 693–704 (2018)

    Google Scholar 

  5. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  6. Shi, H., Xu, M., Li, R.: Deep learning for household load forecasting-a novel pooling deep RNN. IEEE Trans. Smart Grid 9(5), 5271–5280 (2018)

    Article  Google Scholar 

  7. Hsieh, J., et al.: Post-adoption switching behavior for online service substitutes: a perspective of the push–pull–mooring framework. Comput. Hum. Behav. 28(5), 1912–1920 (2012)

    Article  Google Scholar 

  8. Brenot, H., et al.: Support to Aviation Control Service (SACS): an online service for near-real-time satellite monitoring of volcanic plumes. Nat. Hazards Earth Syst. Sci. 14(5), 1099–1123 (2014). https://doi.org/10.5194/nhess-14-1099-2014

    Article  Google Scholar 

  9. Mothersbaugh, D.L., et al.: Disclosure antecedents in an online service context: the role of sensitivity of information. J. Serv. Res. 15(1), 76–98 (2012)

    Article  Google Scholar 

  10. Chung, Y.-L., Wu, S.: An effective toss-and-catch algorithm for fixed-rail mobile terminal equipment that ensures reliable transmission and non-interruptible handovers. Symmetry (Basel) 13(4), 582 (2021). https://doi.org/10.3390/sym13040582

    Article  Google Scholar 

  11. Hashemi, M.J., Masroor, A., Mosqueda, G.: Implementation of online model updating in hybrid simulation. Earthq. Eng. Struct. Dyn. 43(3), 395–412 (2014)

    Article  Google Scholar 

  12. Abouheaf, M., Gueaieb, W., Lewis, F.: Online model-free reinforcement learning for the automatic control of a flexible wing aircraft. IET Control Theory Appl. 14(1), 73–84 (2021)

    Article  Google Scholar 

  13. Aksoylar, C., Dogramaci Aksoylar, N.: Online model identification and updating in multi-platform pseudo-dynamic simulation of steel structures – experimental applications. J. Earthq. Eng.: JEE 1–25 (2021)

    Google Scholar 

  14. Yuying, G., Hui, S., Zhenming, L.: Exploration of OLT converged edge computing for industrial internet. Diànzǐ Jìshù Yīngyòng 47(4), 5–8 (2021)

    Google Scholar 

  15. Li, Y., Song, T., Yang, Y.: Combinatorial auction-based mechanism for task offloading in edge computing. Jisuanji Kexue Yu Tansuo 15(1), 73–83 (2021)

    Google Scholar 

  16. Arena, F., Pau, G.: When edge computing meets IoT systems: analysis of case studies. China Commun. 17(10), 50–63 (2020)

    Article  Google Scholar 

  17. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system (2016). https://doi.org/10.1145/2939672.2939785

  18. Li, H., et al.: XGBoost model and its application to personal credit evaluation. IEEE Intell. Syst. 35(3), 52–61 (2020)

    Article  Google Scholar 

  19. Li, Z., et al.: Application of XGBoost in P2P default prediction. In: Journal of Physics Conference Series, vol. 1871, no. 1 (2021)

    Google Scholar 

  20. Zhang, J., et al.: LightGBM: an effective and scalable algorithm for prediction of chemical toxicity–application to the Tox21 and mutagenicity data sets. J. Chem. Inf. Model. 59(10), 4150–4158 (2019)

    Article  Google Scholar 

  21. Al-kasassbeh, M., Abbadi, M., Al-Bustanji, A.: LightGBM algorithm for malware detection. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Intelligent Computing, pp. 391–403. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52243-8_28

    Chapter  Google Scholar 

  22. Sun, X., Liu, M., Sima, Z.: A novel cryptocurrency price trend forecasting model based on LightGBM. Finan. Res. Lett. 32, 101084 (2020)

    Article  Google Scholar 

  23. Smirnov, E.A., et al.: Comparison of regularization methods for ImageNet classification with deep convolutional neural networks. AASRI Procedia 6, 89–94 (2014)

    Article  Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  25. Rastegari, M., et al.: XNOR-net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  26. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent Neural Network Regularization, arXiv:1409.2329 (2014)

  27. Chien, J., Lu, T.: Deep recurrent regularization neural network for speech recognition (2015). https://doi.org/10.1109/ICASSP.2015.7178834

  28. Albahar, M.A.: Recurrent neural network model based on a new regularization technique for real-time intrusion detection in SDN environments. Secur. Commun. Netw. 2019, 1–9 (2019)

    Article  Google Scholar 

  29. Shi, X., et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting (2015)

    Google Scholar 

  30. Zhao, R., et al.: Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors (Basel, Switzerland) 17(2), 273 (2017). https://doi.org/10.3390/s17020273

    Article  Google Scholar 

  31. Rampasek, L., Goldenberg, A.: TensorFlow: biology’s gateway to deep learning? Cell Syst. 2(1), 12–14 (2016)

    Article  Google Scholar 

  32. Cabañas, R., Salmerón, A., Masegosa, A.R.: InferPy: probabilistic modeling with Tensorflow made easy. Knowl.-Based Syst. 168, 25–27 (2019)

    Article  Google Scholar 

  33. Hao, L., et al.: TensorD: a tensor decomposition library in TensorFlow. Neurocomput. (Amsterdam) 318, 196–200 (2018)

    Article  Google Scholar 

  34. Gai, K., Qiu, M., Elnagdy, S.: A novel secure big data cyber incident analytics framework for cloud-based cybersecurity insurance. In: IEEE BigDataSecurity (2016)

    Google Scholar 

  35. Lu, Z., Wang, N., Wu, J., Qiu, M.: IoTDeM: an IoT big data-oriented MapReduce performance prediction extended model in multiple edge clouds. JPDC 118, 316–327 (2018)

    Google Scholar 

  36. Guo, Y., Zhuge, Q., Hu, J., et al.: Optimal data allocation for scratch-pad memory on embedded multi-core systems. In: IEEE ICPP Conference, pp. 464–471 (2011)

    Google Scholar 

  37. Lu, R., Jin, X., Zhang, S., Qiu, M., Wu, X.: A study on big knowledge and its engineering issues. IEEE Trans. Knowl. Data Eng. 31(9), 1630–1644 (2018)

    Article  Google Scholar 

  38. Qiu, H., Qiu, M., Lu, Z.: Selective encryption on ECG data in body sensor network based on supervised machine learning. Inf. Fusion 55, 59–67 (2020)

    Article  Google Scholar 

  39. Du, Y., et al.: A deep learning network‐assisted bladder tumour recognition under cystoscopy based on Caffe deep learning framework and EasyDL platform. Int. J. Med. Robot. Comput. Assisted Surg. 17(1), 1–8 (2021). https://doi.org/10.1002/rcs.2169

    Article  Google Scholar 

  40. Roy, P., et al.: NUMA-Caffe: numa-aware deep learning neural networks. ACM Trans. Archit. Code Optim. 15(2), 1–26 (2018)

    Article  Google Scholar 

  41. Garea, A.S., Heras, D.B., Argüello, F.: Caffe CNN-based classification of hyperspectral images on GPU. J. Supercomput. 75(3), 1065–1077 (2018). https://doi.org/10.1007/s11227-018-2300-2

    Article  Google Scholar 

  42. Li, S., et al.: PyTorch distributed: experiences on accelerating data parallel training. Proc. VLDB Endow. 13(12), 3005–3018 (2020)

    Article  Google Scholar 

  43. Steppa, C., Holch, T.L.: HexagDLy—processing hexagonally sampled data with CNNs in PyTorch. Softwarex 9, 193–198 (2019)

    Article  Google Scholar 

  44. Gao, X., et al.: TorchANI: a free and open source PyTorch-based deep learning implementation of the ANI neural network potentials. J. Chem. Inf. Model. 60(7), 3408–3415 (2020)

    Article  Google Scholar 

  45. Le Grand, S., Götz, A.W., Walker, R.C.: SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 184(2), 374–380 (2013)

    Article  Google Scholar 

  46. Owens, J.D., et al.: GPU computing. Proc. IEEE 96(5), 879–899 (2008)

    Article  Google Scholar 

  47. Hong, C.-H., Spence, I., Nikolopoulos, D.S.: GPU virtualization and scheduling methods: a comprehensive survey. ACM Comput. Surv. 50(3), 1–37 (2017). https://doi.org/10.1145/3068281

    Article  Google Scholar 

  48. Guazzelli, A., et al.: PMML: an open standard for sharing models. R J. 1(1), 60 (2009). https://doi.org/10.32614/RJ-2009-010

    Article  Google Scholar 

  49. Fernández, S., et al.: Using automated planning for improving data mining processes. Knowl. Eng. Rev. 28(2), 157–173 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This work financially supported by Science and Technology Program of State Grid Corporation of China under Grant No.: 5700-202055183A-0-0-00, which named Research on Technology of Big Data Monitoring Analysis in Power Grid by Coordination of Data Middle platform & Edge Calculation. Without their help, it would be much harder to finish the program and this paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, P., Lu, Y., Wang, G., Zhou, W. (2022). Efficient Online Service Based on Go-Tensorflow in the Middle-Station Scenario of Grid Service. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics