Skip to main content

Research on Data Fault-Tolerance Method Based on Disk Bad Track Isolation

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

  • 1107 Accesses

Abstract

Disk is not only an important carrier to save data, but also a key component of storage system. It is of great significance to improve the reliability and data availability of disk. In the big data environment, the number of disks in the storage system is huge and distributed, so the maintenance for disk failure is inefficient and costly. Disk bad track is one of the most common disk faults. To solve this problem, this paper proposes a disk bad track isolation algorithm. This approach uses a data fault-tolerance mechanism to isolate physical bad tracks, effectively reducing the disk failure rate, improving service stability, and reducing system maintenance costs. The results show that the bad track isolation method can reduce the Disk IO exception by 47%, and significantly reduce the disk failure rate. It is effective in improving system stability and reducing maintenance cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, W., Ning, Z., Xie, S., Hu, Yu., Lu, S., Zhang, D.: Secure fusion approach for the internet of things in smart autonomous multi-robot systems. Inf. Sci.1–20 (2021). https://doi.org/10.1016/j.ins.2021.08.035

  2. Liang, W., Zhang, D., Lei, X., Tang, M., Li, K., Zomaya, A.: Circuit copyright blockchain: blockchain-based homomorphic encryption for IP circuit protection. IEEE Trans. Emerg. Top. Comput. 1 (2020). https://doi.org/10.1109/TETC.2020.2993032

  3. Liang, W., Xiao, L., Zhang, K., Tang, M., He, D., Li, K.C.: Data fusion approach for collaborative anomaly intrusion detection in blockchain-based systems. IEEE Internet Things J. 1 (2021). https://doi.org/10.1109/JIOT.2021.3053842

  4. Liang, W., et al.: Deep neural network security collaborative filtering scheme for service recommendation in intelligent cyber-physical systems. IEEE Internet Things J. (2021). https://doi.org/10.1109/JIOT.2021.3086845

  5. Hughes, G.F., Murray, J.F., Kreutz-Delgado, K., et al.: Improved disk-drive failure warnings. IEEE Trans. Reliab. 51(3), 350–357 (2002)

    Article  Google Scholar 

  6. Li, J., Wang, G., Liu, X., Li, Z.: Overview of storage system reliability prediction. J. Front. Comput. Sci. Technol. 11(03), 341–354 (2017)

    Google Scholar 

  7. Xu, C.: Research and design of disaster data recovery system. Chongqing University of technology (2010)

    Google Scholar 

  8. Xie, Y., Dan, F., Fang, W., et al.: OME: an optimized modeling engine for disk failure prediction in heterogeneous datacentre. In: 2018 IEEE 36th International Conference on Computer Design (ICCD). IEEE Computer Society (2018)

    Google Scholar 

  9. Zhao, Y., Liu, X., Gan, S., Zheng, W.: Predicting disk failures with HMM- and HSMM-based approaches. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 390–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14400-4_30

    Chapter  Google Scholar 

  10. Zhu, B., Gang, W., Liu, X., et al.: Proactive drive failure prediction for large scale storage systems. In: Mass Storage Systems & Technologies. IEEE (2013)

    Google Scholar 

  11. Xiao, J., Xiong, Z., Wu, S., et al.: Disk failure prediction in data centers via online learning, pp. 1–10 (2018)

    Google Scholar 

  12. Li, J., Wang, G., Liu, X., Li, Z.: Review of reliability prediction for storage system. J. Front. Comput. Sci. Technol. 11(03), 341–354 (2017)

    Google Scholar 

  13. Jia, Y., Li, J., Jia, R., et al.: Hard disk failure prediction model validation in large data center environment. J. Comput. Res. Dev. 52(S2), 54–61 (2015)

    Google Scholar 

  14. Jiang, S., Du, C., Chen, H., Li, J., Wu, J.: An unsupervised adversarial learning method for hard disk fault prediction. J. Xidian Univ. 47(02), 118–125 (2020)

    Google Scholar 

  15. Tan, Y., Gu, X.: On predictability of system anomalies in real world. In: 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 133–140 (2010). https://doi.org/10.1109/MASCOTS.2010.22

  16. Patterson, D.A., Gibson, G.A., Katz, R.H.: A case for redundant arrays of inexpensive disks (RAID). In: Proceedings of the International Conference on Management of Data (SIGMOD), 109–116. ACM, New York (1988)

    Google Scholar 

  17. Hamerly, G., Elkan, C.: Bayesian approaches to failure prediction for disk drives (2003)

    Google Scholar 

  18. Agarwal, V., Bhattacharyya, C., Niranjan, T., et al.: Discovering rules from disk events for predicting hard drive failures. In: International Conference on Machine Learning & Applications. IEEE Computer Society (2009)

    Google Scholar 

  19. Xiotech: ISE-The new foundation of data storage, 08 May 2008. http://www.xiotech.com/ise-technoloty.php

  20. Lei, Z., Qiu, M., Tseng, W.C., et al.: Variable partitioning and scheduling for MPSoC with virtually shared scratch pad memory. J. Signal Process. Syst. 58(2), 247–265 (2010)

    Article  Google Scholar 

  21. Guo, Y., Zhuge, Q., Hu, J., et al.: Optimal data allocation for scratch-pad memory on embedded multi-core systems. In: International Conference on Parallel Processing. IEEE (2011)

    Google Scholar 

  22. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reliability. In: Proceedings of the 1st ACM symposium on Cloud computing (SoCC 2010), pp. 193–204. Association for Computing Machinery, New York (2010)

    Google Scholar 

  23. Yang, H., Yang, Y., Tu, Y., Sun, G., Wu, Z.: Proactive fault tolerance based on “collection—prediction—migration—feedback” mechanism. J. Comput. Res. Dev. 57(02), 306–317 (2020)

    Google Scholar 

  24. Jia, R., Li, J., Wang, G., Li, Z., Liu, X.: Optimization and choice of hard disk fault prediction model based on AdaBoost and genetic algorithm. J. Comput. Res. Dev. 51(S1), 148–154 (2014)

    Google Scholar 

  25. Hu, W., Liu, G., Li, Q., Liu, X.: Research on intelligent failure prediction based self-healing storage system. J. Comput. Res. Dev. 48(S1), 7–11 (2011)

    Google Scholar 

  26. Qiu, M., Chen, Z., Liu, M.: Low-power low-latency data allocation for hybrid scratch-pad memory. IEEE Embed. Syst. Lett. 6(4), 69–72 (2014)

    Article  Google Scholar 

  27. Murray, J.F., Hughers, G., Kreutz-Delgado, K.: Hard drive failure prediction using non-parametric statistical methods. In: Procof the ICANN/ICONIP, p. 1 (2003)

    Google Scholar 

  28. Murray, J.F., Hughes, G.F., et al.: Machine learning methods for predicting failures in hard drives: a multiple-instance application. J. Mach. Learn. Res. (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zheng, L., Zhang, S. (2022). Research on Data Fault-Tolerance Method Based on Disk Bad Track Isolation. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics