Skip to main content

An Automatic Design Method of Similarity Fusion Neural Network Based on SG-CIM Model

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

Abstract

The State Grid Enterprise Public Data Model (SG-CIM 4.0) is a semantically unified data model that can be provided for smart grid business applications. The model is based on a standard table to find similar entities in the physical model for consistency checking. The standard table entities and physical model entities contain both continuous attributes and discrete attributes. How to accurately calculate the similarity of these different attributes and fuse them into a unique similarity, which can be used to efficiently and accurately mine the entity pairs with the highest similarity, are problems to be solved. In order to solve the above problems and make this similarity calculation and fusion method scalable, this paper calculates the syntactic similarity of continuous attributes, semantic similarity, and discrete attribute similarity to the content of different attributes in the entity and introduces a NAS (Neural Architecture Search) based on these similarities Similarity Fusion Neural Network automatically designed a method to achieve the fusion of similarity, which will be called SFNAS (Similarity Fusion NAS). The neural network fusion similarity calculated using SFNAS is better than the traditional linear weighted average similarity in terms of entity pair matching hit rate. This paper can provide useful references for subsequent research on SG-CIM models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, R., Jin, X., Zhang, S., Qiu, M., Wu, X.: A study on big knowledge and its engineering issues. IEEE Trans. Knowl. Data Eng. 31(9), 1630–1644 (2018)

    Article  Google Scholar 

  2. Qiu, M., Cao, D., et al.: Data transfer minimization for financial derivative pricing using Monte Carlo simulation with GPU in 5G. J. Commun. Syst. 29(16), 2364–2374 (2016)

    Article  Google Scholar 

  3. Qiu, H., Qiu, M., Lu, Z.: Selective encryption on ECG data in body sensor network based on supervised machine learning. Inf. Fusion 55, 59–67 (2020)

    Article  Google Scholar 

  4. Qiu, M., Khisamutdinov, E., et al.: RNA nanotechnology for computer design and in vivo computation. Philos. Trans. R. Soc. A (2013)

    Google Scholar 

  5. Qiu, M., Xue, C., Shao, Z., Sha, E.: Energy minimization with soft real-time and DVS for uniprocessor and multiprocessor embedded systems. In: IEEE DATE Conference, pp. 1–6 (2007)

    Google Scholar 

  6. Qiu, L., Gai, K., Qiu, M.: Optimal big data sharing approach for tele-health in cloud computing. In: IEEE SmartCloud, pp. 184–189 (2016)

    Google Scholar 

  7. Wan, Q., Wang, S., He, X.: Application method of Taiwan SG-CIM model in data. Telecommun. Sci. 36(03), 140–147 (2020)

    Google Scholar 

  8. Wang, J., Wang, J.: Design and implementation of public data model for electric power enterprises based on IEC standard. China Electr. Power 44(2), 87–90 (2011)

    Google Scholar 

  9. Shenming, Z., Guoding, L.: Introduction of standard IEC 61970. Autom. Electr. Power Syst. 14, 1–6 (2002)

    Google Scholar 

  10. Uslar, M., Specht, M., Rohjans, S., Trefke, J., González, J.M.: The Common Information Model CIM: IEC 61968/61970 and 62325-A Practical Introduction to the CIM. Springer, Heidelberg (2012)

    Book  Google Scholar 

  11. Rolia, J., Casale, G., Krishnamurthy, D., Dawson, S., Kraft, S.: Predictive modelling of SAP ERP applications: challenges and solutions. In: ICST Conference on Performance Evaluation Methodologies and Tools, pp. 1–9, October 2009

    Google Scholar 

  12. Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. Int. J. Comput. Appl. 68(13), 13–18 (2013). https://doi.org/10.5120/11638-7118

    Article  Google Scholar 

  13. Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1091–1095 (2007)

    Article  Google Scholar 

  14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  16. Hamers, L.: Similarity measures in scientometric research: the Jaccard index versus Salton’s cosine formula. Inf. Process. Manag. 25(3), 315–318 (1989)

    Article  Google Scholar 

  17. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  19. Kramer, O.: Genetic algorithms. In: Kramer, O. (ed.) Genetic Algorithm Essentials, vol. 679, pp. 11–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52156-5_2

    Chapter  MATH  Google Scholar 

  20. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  21. Marzal, A., Vidal, E.: Computation of normalized edit distance and applications. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 926–932 (1993)

    Article  Google Scholar 

  22. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

  23. Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of Jaccard coefficient for keywords similarity. In: International Multiconference of Engineers and Computer Scientists, vol. 1, no. 6, pp. 380–384, March 2013

    Google Scholar 

  24. Stanimirovic, I.P., Zlatanovic, M.L., Petkovic, M.D.: On the linear weighted sum method for multi-objective optimization. Facta Acta Univ. 26(4), 49–63 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Wistuba, M., Rawat, A., Pedapati, T.: A survey on neural architecture search. arXiv preprint arXiv:1905.01392 (2019)

  26. Graves, A.: Long short-term memory. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks, pp. 37–45. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_4

    Chapter  MATH  Google Scholar 

  27. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  28. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, pp. 177–186. Physica-Verlag HD (2010)

    Google Scholar 

  29. Karp, R.M., Luby, M., Madras, N.: Monte-Carlo approximation algorithms for enumeration problems. J. Algorithms 10(3), 429–448 (1989)

    Article  MathSciNet  Google Scholar 

  30. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI approximation. J. Artif. Intell. Res. 40, 95–142 (2011)

    Article  MathSciNet  Google Scholar 

  31. Wong, C., Houlsby, N., Lu, Y., Gesmundo, A.: Transfer learning with neural automl. arXiv preprint arXiv:1803.02780 (2018)

Download references

Acknowledgment

This work financially supported by Science and Technology Program of State Grid Corporation of China under Grant No.: 5211DS21000T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, X. et al. (2022). An Automatic Design Method of Similarity Fusion Neural Network Based on SG-CIM Model. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics