Skip to main content

Research on Graph Structure Data Adversarial Examples Based on Graph Theory Metrics

  • Conference paper
  • First Online:
Book cover Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

Abstract

Graph neural networks can learn graph structure data directly and mine its information, which can be used in drug research and development, financial fraud prevention, and other fields. The existing research shows that the graph neural network is lacking robustness and is vulnerable to attack by adversarial examples. At present, there are two problems in the generation of confrontation examples for graph neural networks. One is that the properties of graph structure are not fully used to describe the antagonistic examples, the other is that the gradient calculation is linked with the loss function and not directly linked with the properties of graph structure, which leads to excessive search space. To solve these two problems, this paper proposes a graph structure data confrontation example generation scheme based on graph theory measurement. In this paper, the average distance and clustering coefficient is used as the basis for each step of disturbance, and the counterexamples are generated under the premise of keeping the data characteristics. Experimental results on small-world networks and random graphs show that, compared with the previous methods, the proposed method makes full use of the nature of graph structure, does not need complex derivation, and takes less time to generate confrontation examples, which can meet the needs of iterative development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  2. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

  3. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  4. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  5. Li, H., Liu, J., Wu, K., Yang, Z., Liu, R.W., Xiong, N.: Spatio-temporal vessel trajectory clustering based on data mapping and density. IEEE Access 6, 58939–58954 (2018)

    Article  Google Scholar 

  6. He, R., Xiong, N., Yang, L.T., Park, J.H.: Using multi-modal semantic association rules to fuse keywords and visual features automatically for web image retrieval. Inf. Fusion 12(3), 223–230 (2011)

    Article  Google Scholar 

  7. Weber, M., et al.: Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

  8. Shaham, U., Yamada, Y., Negahban, S.: Understanding adversarial training: Increasing local stability of neural nets through robust optimization. arXiv preprint arXiv:1511.05432 (2015)

  9. Di, Z., Wu, J.: Complex network research from statistical physics. PhD thesis (2004)

    Google Scholar 

  10. Wang, G.C.X., Li, X.: Complex Network Theory and Its Applications. Tsinghua University Press Co., Ltd., Beijing (2006)

    Google Scholar 

  11. Guangrong, C., Xiaofan, W., Li, X.: Introduction to Network Science, vol. 6. Higher Education Press, Beijing (2012)

    Google Scholar 

  12. Wang, Z., Li, T., Xiong, N., Pan, Y.: A novel dynamic network data replication scheme based on historical access record and proactive deletion. J. Supercomput. 62(1), 227–250 (2012)

    Article  Google Scholar 

  13. Guo, W., Xiong, N., Vasilakos, A.V., Chen, G., Cheng, H.: Multi-source temporal data aggregation in wireless sensor networks. Wirel. Pers. Commun. 56(3), 359–370 (2011)

    Article  Google Scholar 

  14. Yao, Y., Xiong, N., Park, J.H., Ma, L., Liu, J.: Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput. Math. Appl. 65(9), 1318–1325 (2013)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Q., Zhou, C., Tian, Y.-C., Xiong, N., Qin, Y., Bowen, H.: A fuzzy probability bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Trans. Ind. Inf. 14(6), 2497–2506 (2017)

    Article  Google Scholar 

  16. Mou, W., Tan, L., Xiong, N.: A structure fidelity approach for big data collection in wireless sensor networks. Sensors 15(1), 248–273 (2015)

    Article  Google Scholar 

  17. Huang, S., Liu, A., Zhang, S., Wang, T., Xiong, N.N.: BD-VTE: a novel baseline data based verifiable trust evaluation scheme for smart network systems. IEEE Trans. Netw. Sci. Eng. (2020)

    Google Scholar 

  18. Yin, J., Lo, W., Deng, S., Li, Y., Zhaohui, W., Xiong, N.: Colbar: a collaborative location-based regularization framework for qos prediction. Inf. Sci. 265, 68–84 (2014)

    Article  MathSciNet  Google Scholar 

  19. Wan, Z., Xiong, N., Ghani, N., Vasilakos, A.V., Zhou, L.: Adaptive unequal protection for wireless video transmission over ieee 802.11 e networks. Multimed. Tools Appl. 72(1), 541–571 (2014)

    Google Scholar 

  20. Qu, Y., Xiong, N.: RFH: a resilient, fault-tolerant and high-efficient replication algorithm for distributed cloud storage. In: 2012 41st International Conference on Parallel Processing, pp. 520–529. IEEE (2012)

    Google Scholar 

  21. Gai, K., Qiu, M.: Reinforcement learning-based content-centric services in mobile sensing. IEEE Netw. 32(4), 34–39 (2018)

    Article  Google Scholar 

  22. Gai, K., Qiu, M.: Optimal resource allocation using reinforcement learning for iot content-centric services. Appl. Soft Comput. 70, 12–21 (2018)

    Article  Google Scholar 

  23. Gai, K., Qiu, M., Zhao, H., Sun, X.: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing. IEEE Trans. Sustain. Comput. 3(2), 60–72 (2017)

    Article  Google Scholar 

  24. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  25. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)

    Google Scholar 

  26. Baluja, S., Fischer, I.: Adversarial transformation networks: Learning to generate adversarial examples. arXiv preprint arXiv:1703.09387 (2017)

  27. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  28. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2847–2856 (2018)

    Google Scholar 

  29. Bojchevski, A., Günnemann, S.: Adversarial attacks on node embeddings via graph poisoning. In: International Conference on Machine Learning, pp. 695–704. PMLR (2019)

    Google Scholar 

  30. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  31. Gaitonde, J., Kleinberg, J., Tardos, E.: Adversarial perturbations of opinion dynamics in networks. In: Proceedings of the 21st ACM Conference on Economics and Computation, pp. 471–472 (2020)

    Google Scholar 

  32. Dai, H., et al.: Adversarial attack on graph structured data. In: International Conference on Machine Learning, pp. 1115–1124. PMLR (2018)

    Google Scholar 

  33. Sun, M., et al.: Data poisoning attack against unsupervised node embedding methods. arXiv preprint arXiv:1810.12881 (2018)

  34. Chen, J., Shi, Z., Wu, Y., Xu, X., Zheng, H.: Link prediction adversarial attack. arXiv preprint arXiv:1810.01110 (2018)

  35. Yu, S., Zheng, J., Chen, J., Xuan, Q., Zhang, Q.: Unsupervised euclidean distance attack on network embedding. In: 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC), pp. 71–77. IEEE (2020)

    Google Scholar 

  36. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  37. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 163–170 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, W., Lu, M., Zheng, Y., Xiong, N.N. (2022). Research on Graph Structure Data Adversarial Examples Based on Graph Theory Metrics. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics