Skip to main content

OPN-DTSP: Optimized Pointer Networks for Approximate Solution of Dynamic Traveling Salesman Problem

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

  • 1209 Accesses

Abstract

The Traveling Salesman Problem (TSP), a classic problem in combinatorial optimization, is a well-known NP-hard problem with a wide range of real-world applications. Dynamic TSP is a further upgrade of TSP. Its dynamic change information leads to the greater complexity of the problem. Over the years, numerous excellent algorithms have been proposed by researchers to solve this problem, from the early exact algorithms to approximate algorithms, heuristics, and more recently, machine learning algorithms. However, these algorithms either only work with static TSP or have an unacceptable time consumption. To this end, we propose an optimized pointer network for approximate solution of dynamic TSP, which guarantees a high-quality approximate solution with very low time consumption. We introduce an attention mechanism in our model to fuse the dynamically changing edge information and the statically invariant node coordinate information and use reinforcement learning to enhance the decision-making of the model. Finally, the superior performance for dynamic TSP with low time-cost is verified on comparison experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. Math. Teach. 65.7, 601–601 (1994)

    MATH  Google Scholar 

  2. Wang, Z., Li, T., Xiong, N., et al.: A novel dynamic network data replication scheme based on historical access record and proactive deletion. J. Supercomput. 62(1), 227–250 (2012). https://doi.org/10.1007/s11227-011-0708-z

    Article  Google Scholar 

  3. Reinelt, G.: The traveling salesman problem: computational solutions for TSP applications, Lecture Notes Computer Science 840 (1994)

    Google Scholar 

  4. Guo, W., Xiong, N., Vasilakos, A.V., et al.: Multi-source temporal data aggregation in wireless sensor networks. Wireless Pers. Commun. 56(3), 359–370 (2011)

    Article  Google Scholar 

  5. Gusfield, D., Karp, R., Wang, L., et al.: Graph traversals, genes, and matroids: an efficient case of the travelling salesman problem. In: Proceedings of CPM, 167–180 (2006)

    Google Scholar 

  6. Yin, J., Lo, W., Deng, S., et al.: Colbar: a collaborative location-based regularization framework for QoS prediction. Inf. Sci. 265, 68–84 (2014)

    Article  MathSciNet  Google Scholar 

  7. Carpeneto, G., Toth, P.: Some new branching and bounding criteria for the asymmetric travelling salesman problem. Manage. Sci. 26(7), 736–43 (1980). http://www.jstor.org/stable/2630706, INFORMS

  8. Dantzig, G., et al.: Solution of a Large-Scale Traveling-Salesman Problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954). http://www.jstor.org/stable/166695, INFORMS

  9. Wan, Z., Xiong, N., Ghani, N., et al.: Adaptive unequal protection for wireless video transmission over IEEE 802.11 e networks. Multimedia Tools Appl. 72(1), 541–571 (2014)

    Google Scholar 

  10. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9, 61–63 (1962)

    Article  MathSciNet  Google Scholar 

  11. Meng, F.: Genetic algorithm of traveling salesman problem. Systems Engineering—Theory and Practice (1997)

    Google Scholar 

  12. Qu, Y., Xiong, N.: RFH: a resilient, fault-tolerant and high-efficient replication algorithm for distributed cloud storage. In: 2012 41st International Conference on Parallel Processing, pp. 520–529. IEEE (2012)

    Google Scholar 

  13. He, R., Xiong, N., Yang, L.T., et al.: Using multi-modal semantic association rules to fuse keywords and visual features automatically for web image retrieval. Inf. Fusion 12(3), 223–230 (2011)

    Article  Google Scholar 

  14. Zhang, Q., Zhou, C., Tian, Y.C., et al.: A fuzzy probability Bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Trans. Industr. Inf. 14(6), 2497–2506 (2017)

    Article  Google Scholar 

  15. Tsai, C.F., Tsai, C.W., Tseng, C.C.: A new hybrid heuristic approach for solving large traveling salesman problem. Inf. Sci. 166(1–4), 67–81 (2004)

    Article  MathSciNet  Google Scholar 

  16. Liu, Y.J.: An algorithms with taboo search in traveling salesman problem. J. Jiangxi Univ. Sci. Technol. (2006)

    Google Scholar 

  17. Wu, M., Tan, L., Xiong, N.: A structure fidelity approach for big data collection in wireless sensor networks. Sensors 15(1), 248–273 (2015)

    Article  Google Scholar 

  18. Huang, S., Liu, A., Zhang, S., et al.: BD-VTE: A novel baseline data based verifiable trust evaluation scheme for smart network systems. IEEE Trans. Network Sci. Eng. 8, 2087–2105 (2020)

    Article  Google Scholar 

  19. Li, H., Liu, J., Wu, K., et al.: Spatio-temporal vessel trajectory clustering based on data mapping and density. IEEE Access 6, 58939–58954 (2018)

    Article  Google Scholar 

  20. Yeo, G.A.: Polynomial approximation algorithms for the TSP and the QAP with a factorial domination number. Discrete Appl. Math. 119, 107–116 (2002)

    Article  MathSciNet  Google Scholar 

  21. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Comput. Sci. 28 (2015)

    Google Scholar 

  22. Dai, H., Khalil, E.B., Zhang, Y., et al.: Learning combinatorial optimization algorithms over graphs. In: Proceedings of NeurIPS, pp. 6351–6361 (2017)

    Google Scholar 

  23. Nazari, M., et al.: Reinforcement learning for solving the vehicle routing problem (2018)

    Google Scholar 

  24. Kool, W., Van Hoof, H., Welling, M., et al.: Attention, learn to solve routing problems! In: International Conference on Learning Representations (2019)

    Google Scholar 

  25. Zhou, A., Kang, L., Yan, Z.: Solving dynamic TSP with evolutionary approach in real time. In: Congress on Evolutionary Computation IEEE (2003)

    Google Scholar 

  26. Wang, Y., Zhe, X., Sun, J., Han, F., Todo, Y., Gao, S.: Ant colony optimization with neighborhood search for dynamic TSP. In: Tan, Y., Shi, Y., Niu, B. (eds.) Advances in Swarm Intelligence, pp. 434–442. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-41000-5_43

    Chapter  Google Scholar 

  27. Gharehchopogh, F.: A new approach in dynamic traveling salesman problem: a hybrid of ant colony optimization and descending gradient. Int. J. Managing Public Sect. Inf. Commun. Technol. 3(2), 1–9 (2012)

    Google Scholar 

  28. Yao, Y., Xiong, N., Park, J.H., et al.: Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput. Math. Appl. 65(9), 1318–1325 (2013)

    Article  MathSciNet  Google Scholar 

  29. Mavrovouniotis, M., Van, M., Yang, S.: Pheromone modification strategy for the dynamic travelling salesman problem with weight changes. IEEE, pp. 1–8 (2017)

    Google Scholar 

  30. Gai, K., Qiu, M.: Reinforcement learning-based content-centric services in mobile sensing. IEEE Network 32(4), 34–39 (2018). https://doi.org/10.1109/MNET.2018.1700407

    Article  Google Scholar 

  31. Hochreiter, S.: Untersuchungen zu Dynamischen Neuronalen Netzen[D]. Technische Universität München, Diploma (1991)

    Google Scholar 

  32. Hochreiter, et al.: Long short-term memory. Neural Comput. (1997)

    Google Scholar 

  33. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. Comput. Sci. (2014)

    Google Scholar 

  34. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Proceedings of NeurIPS, pp. 3104–3112 (2014)

    Google Scholar 

  35. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. Comput. Sci. (2014)

    Google Scholar 

  36. Littman, M.L.: Reinforcement learning : a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  37. Gai, K., Qiu, M.: Optimal resource allocation using reinforcement learning for IoT content-centric services. Appl. Soft Comput. 70, 12–21 (2018)

    Article  Google Scholar 

  38. Gai, K., Qiu, M., Zhao, H., Sun, X.: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing. IEEE Trans. Sustain. Comput. 3(2), 60–72 (2018). https://doi.org/10.1109/TSUSC.2017.2723954

    Article  Google Scholar 

  39. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis Kings College University of Cambridge (1989)

    Google Scholar 

  40. Sutton, R.S.: Policy gradient methods for reinforcement learning with function approximation. In: Proceedings of NIPS, pp. 1057–1063 (2000)

    Google Scholar 

  41. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  42. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of NeurIPS, pp. 1097–1105 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, Z., Lu, M., He, W., Cai, J., Xiong, N.N. (2022). OPN-DTSP: Optimized Pointer Networks for Approximate Solution of Dynamic Traveling Salesman Problem. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics