Skip to main content

A Novel Client Sampling Scheme for Unbalanced Data Distribution Under Federated Learning

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

  • 1386 Accesses

Abstract

Federated learning is one computation paradigm used to address privacy preservation and efficient collaboration computing nowadays. Especially, in the environment where edge devices are facing different data scenarios, it is a challenge to enhance the prediction model accuracy. Since the data distributions on different edge devices might not be independent identical distributions, and also due to the communication obstacles existing in the modern complicated wireless world, it is an essential problem to sample which client devices to contribute to the server learning model. In this paper, instead of making the assumption on uniform distributed data sources, we assume the agnostic data distribution presumption. One indicator called client reward is defined applicable on the proposed client sampling algorithm. Combing with the redefined loss functions on the agnostic data distribution, a novel client sampling scheme is proposed and tested on real world datasets. The experiment results show that the client sampling scheme improves prediction accuracy on unbalanced data sources from different edge devices and achieves reasonable computing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao, Y., Iqbal, S., et al.: Performance and power analysis of high-density multi-GPGPU architectures: a preliminary case study. In: IEEE 17th HPCC (2015)

    Google Scholar 

  2. Qiu, M., Ming, Z., Li, J., Liu, S., Wang, B., Lu, Z.: Three-phase time-aware energy minimization with DVFS and unrolling for chip multiprocessors. J. Syst. Architect. 58(10), 439–445 (2012)

    Article  Google Scholar 

  3. Zhang, Z., Wu, J., et al.: Jamming ACK attack to wireless networks and a mitigation approach. In: IEEE GLOBECOM Conference, pp. 1–5 (2008)

    Google Scholar 

  4. Su, H., Qiu, M., Wang, H.: Secure wireless communication system for smart grid with rechargeable electric vehicles. IEEE Commun. Mag. 50(8), 62–68 (2012)

    Article  Google Scholar 

  5. Qiu, M., Ming, Z., Li, J., Liu, J., Quan, G., Zhu, Y.: Informer homed routing fault tolerance mechanism for wireless sensor networks. J. of Systems Archi. 59(4–5), 260–270 (2013)

    Article  Google Scholar 

  6. Gai, K., Qiu, M., Thuraisingham, B., Tao, L.: Proactive attribute-based secure data schema for mobile cloud in financial industry. In: IEEE 17th HPCC (2015)

    Google Scholar 

  7. Caldas, S., Konečny, J., McMahan, H.B., Talwalkar, A.: Expanding the reach of federated learning by reducing client resource requirements (2018). arXiv:1812.07210

  8. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency (2016). arXiv:1610.05492

  9. Hamer, J., Mohri, M., Suresh, A.T.: FedBoost: a communication-efficient algorithm for federated learning. In: Proceedings of the 37th International Conference on Machine Learning, PMLR 119, pp. 3973–3983 (2020)

    Google Scholar 

  10. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54:1273–1282 (2017)

    Google Scholar 

  11. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R.: FedPAQ: a communication-efficient federated learning method with periodic averaging and quantization. In: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, PMLR 108:2021–2031 (2020)

    Google Scholar 

  12. Tao, L., Golikov, S., et al.: A reusable software component for integrated syntax and semantic validation for services computing. In: IEEE Symposium on Service-Oriented System Engineering, pp. 127–132 (2015)

    Google Scholar 

  13. Zhao, H., Chen, M., et al.: A novel pre-cache schema for high performance Android system. Futur. Gener. Comput. Syst. 56, 766–772 (2016)

    Article  Google Scholar 

  14. Li, J., Qiu, M., Niu, J., et al.: Feedback dynamic algorithms for preemptable job scheduling in cloud systems. In: IEEE/WIC/ACM Conference on Web Intelligence (2010)

    Google Scholar 

  15. Tang, X., Li, K., et al.: A hierarchical reliability-driven scheduling algorithm in grid systems. J. Parallel Distrib. Comput. 72(4), 525–535 (2012)

    Article  Google Scholar 

  16. Qiu, H., Qiu, M., Memmi, G., Ming, Z., Liu, M.: A dynamic scalable blockchain based communication architecture for IoT. In: Qiu, M. (ed.) SmartBlock 2018. LNCS, vol. 11373, pp. 159–166. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05764-0_17

    Chapter  Google Scholar 

  17. Zhang, K., Kong, J., Qiu, M., Song, G.: Multimedia layout adaptation through grammatical specifications. Multimedia Syst. 10(3), 245–260 (2005). https://doi.org/10.1007/s00530-004-0155-2

    Article  Google Scholar 

  18. Thakur, K., Qiu, M., Gai, K., Ali, M.: An investigation on cyber security threats and security models. In: IEEE CSCloud (2015)

    Google Scholar 

  19. Gai, K., Qiu, M., Sun, X., Zhao, H.: Security and privacy issues: a survey on FinTech. In: Qiu, M. (ed.) SmartCom 2016. LNCS, vol. 10135, pp. 236–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52015-5_24

    Chapter  Google Scholar 

  20. Gai, K., Qiu, M.: Optimal resource allocation using reinforcement learning for IoT content-centric services. Appl. Soft Comput. 70, 12–21 (2018)

    Article  Google Scholar 

  21. Sahu, A.K., Li, T., Sanjabi, M.: Federated optimization for heterogeneous networks (2021). arXiv:1812.06127

  22. Zhou, Y., Qing, Y., Lv, J.: Communication-efficient federated learning with compensated overlap-FedAvg (2021). arXiv:2012.06706

  23. Shi, W., Zhou, S., Niu, Z.: Joint device scheduling and resource allocation for latency constrained wireless federated learning. IEEE Trans. Wireless Communications 20(1), 453–467 (2020)

    Article  Google Scholar 

  24. Chang, W.T., Tandon, R.: Communication efficient federated learning over multiple access channels (2021). arXiv:2001.08737

  25. Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous resources in mobile edge. In: Proceedings of the 2019 IEEE International Conference on Communications (ICC). Piscataway, pp. 1–7. IEEE (2019)

    Google Scholar 

  26. Yoshida, N., Nishio, T., Morikura, M.: Hybrid-FL for wireless networks: cooperative learning mechanism using non-IID data. In: Proceedings of the 2020 IEEE International Conference on Communications (ICC). Piscataway, pp. 1–7. IEEE (2020)

    Google Scholar 

  27. Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning. In: Proceedings of the 36th International Conference on Machine Learning, PMLR 97, pp. 4615–4625 (2019)

    Google Scholar 

  28. Anand, R., Mehrotra, K.G., Mohan, C.K., Ranka, S.: An improved algorithm for neural network classification of imbalanced training sets. IEEE Trans. on Neural Networks 4(6), 962–969 (1993)

    Article  Google Scholar 

  29. Yang, M., Wong, A., Zhu, H., Wang, H., Qian, H.: Federated learning with class imbalance reduction (2020) arXiv: 2011.11266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, B., Zheng, X., Zhu, Y., Qiu, M. (2022). A Novel Client Sampling Scheme for Unbalanced Data Distribution Under Federated Learning. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics