Skip to main content

Thunderstorm Recognition Based on Neural Network PRDsNET Models

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

  • 1309 Accesses

Abstract

Thunderstorm is a kind of severe weather with strong sudden and destructive ability. It is still difficult to warn and forecast accurately in the meteorological industry. In this paper, a neural network model of encoder decoding structure -- PRDsNET is constructed, which includes a LSTM variant structure Causal LSTM unit, high-speed characteristic channel GHU (Gradient Highway Units) and DenseBlock module in dense connection. 11 SA/SB Doppler radars and lightning data from 2017 to 2020 in Hunan province were used to verify the effect of thunderstorm recognition. In addition, multiple groups of network architectures with different encoding and decoding and multiple loss functions and optimizers were selected for cross-comparison experiments. Experimental results show that the model has an average hit rate of 95% and an average false alarm rate of 5%. The results are satisfactory and have broad application scenarios in the future meteorological automation work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hui, Y.W., You, H.X., Jin, Z.Y., et al.: Introduction of 3d structure recognition technology of thunderstorm cells based on improved DBSCAN clustering algorithm. J. Trop. Meteorol. 36(4), 542–551 (2020). (in Chinese)

    Google Scholar 

  2. Seed, A.W.: A dynamic and spatial scaling approach to advection forecasting. J. Appl. Meteorol. Climatol. 42, 381–388 (2003)

    Article  Google Scholar 

  3. Fox, N.I., Wikle, C.K.: A Bayesian quantitative precipitation now- cast scheme. Weather Forecast. 20(3), 264–275 (2005)

    Article  Google Scholar 

  4. Gung, Z.Y., Hui, Z.K., Jie, S., et al.: Advances in severe convective weather monitoring and forecasting. J. Appl. Meteorol. 26(6), 641–657 (2015). https://doi.org/10.11898/1001-713.20150601. (in Chinese)

    Article  Google Scholar 

  5. Mecikalski, J.R., Williams, J.K., Jewett, C.P., et al.: Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteorol. Climatol. 54, 1039–1059 (2015)

    Google Scholar 

  6. Xiang, Z.B., Cui, L.G., Ping, L.L., et al.: Hail weather radar recognition algorithm based on fuzzy logic. J. Appl. Meteorol. 25(4), 414–426 (2014)

    Google Scholar 

  7. Hui, Z.K., Guang, Z.Y., Bo, W.T., et al.: Classification method of thunderstorm gale and non-thunderstorm gale based on fuzzy logic. Meteorol. Monthly 43(7), 781–791 (2017). https://doi.org/10.7519/J.issn.1000-0526. (in Chinese)

    Article  Google Scholar 

  8. Liu, X., et al.: Classification and recognition of severe convective weather based on Light GBM algorithm. Plateau Meteorology (2020)

    Google Scholar 

  9. Zheng, Y.: Research on precipitation and thunderstorm identification in Civil Aviation Weather Radar Image based on CNN, Master degree thesis of Yunnan University (2019)

    Google Scholar 

  10. Yifang, Z., Zhenzhen, F., Bing, L.: Lightning near warning model based on convolutional neural network. Meteorological Monthly 47(3), 373–380 (2021). (in Chinese)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., Woo, W.: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In: NIPS (2015)

    Google Scholar 

  13. Jianfeng, G., Guobing, Z., Bojun, L., et al.: Preliminary research and application of artificial intelligence technology in Chongqing near forecast business. Meteorol. Monthly 46(10), 1286–1296 (2020). (in Chinese)

    Google Scholar 

  14. Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y.: Deep learning for precipitation nowcasting: a benchmark and a new model. In: NIPS (2017)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2015)

    Google Scholar 

  16. Wang, Y., Gao, Z., Long, M., et al.: PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning (2018)

    Google Scholar 

  17. Huang, G., Liu, Z., Laurens, V., et al.: Densely Connected Convolutional Networks. IEEE Computer Society (2016)

    Google Scholar 

  18. Wang, Z., Li, T., Xiong, N., Pan, Y.: A novel dynamic network data replication scheme based on historical access record and proactive deletion. J. Supercomput. 62(1), 227–250 (2012)

    Article  Google Scholar 

  19. Guo, W., Xiong, N., Vasilakos, A.V., Chen, G., Cheng, H.: Multi-source temporal data aggregation in wireless sensor networks. Wireless Pers. Commun. 56(3), 359–370 (2011)

    Article  Google Scholar 

  20. Yin, J., Lo, W., Deng, S., Li, Y., Wu, Z., Xiong, N.: Colbar: a collaborative location-based regularization framework for QoS prediction. Inf. Sci. 265, 68–84 (2014)

    Article  MathSciNet  Google Scholar 

  21. Wan, Z., Xiong, N., Ghani, N., Vasilakos, A.V., Zhou, L.: Adaptive unequal protection for wireless video transmission over IEEE 802.11 e networks. Multimedia Tools Appl. 72 (1), 541–571

    Google Scholar 

  22. Qu, Y., Xiong, N.: RFH: A resilient, fault-tolerant and high-efficient replication algorithm for distributed cloud storage. In: The 41st International Conference on Parallel Processing, pp. 520–529 (2012)

    Google Scholar 

  23. He, R., Xiong, N., Yang, L.T., Park, J.H.: Using multi-modal semantic association rules to fuse keywords and visual features automatically for web image retrieval. Inf. Fusion 12(3), 223–230 (2011)

    Article  Google Scholar 

  24. Zhang, Q., Zhou, C., Tian, Y.C., Xiong, N., Qin, Y., Hu, B.: A fuzzy probability Bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Trans. Industr. Inf. 14(6), 2497–2506 (2017)

    Article  Google Scholar 

  25. Wu, M., Tan, L., Xiong, N.: A structure fidelity approach for big data collection in wireless sensor networks. Sensors 15(1), 248–273 (2015)

    Article  Google Scholar 

  26. Huang, S., Liu, A., Zhang, S., Wang, T., Xiong, N.: BD-VTE: A novel baseline data based verifiable trust evaluation scheme for smart network systems. IEEE Trans. Netw. Sci. Eng. (2020). https://doi.org/10.1109/TNSE.2020.3014455

    Article  Google Scholar 

  27. Li, H., Liu, J., Wu, K., Yang, Z., Liu, R.W., Xiong, N.: Spatio-temporal vessel trajectory clustering based on data mapping and density. IEEE Access 6, 58939–58954 (2018)

    Article  Google Scholar 

  28. Yao, Y., Xiong, N., Park, J.H., Ma, L., Liu, J.: Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput. Math. Appl. 65(9), 1318–1325 (2013)

    Article  MathSciNet  Google Scholar 

  29. Xia, F., Hao, R., Li, J., Xiong, N., Yang, L.T., Zhang, Y.: Adaptive GTS allocation in IEEE 802.15. 4 for real-time wireless sensor networks. J. Syst. Arch. 59(10), 1231–1242 (2013)

    Google Scholar 

  30. Gao, K., Han, F., Dong, P., Xiong, N., Du, R.: Connected vehicle as a mobile sensor for real time queue length at signalized intersections. Sensors 19(9), 2059 (2019)

    Article  Google Scholar 

  31. Lu, Y., Wu, S., Fang, Z., Xiong, N., Yoon, S., Park, D.S.: Exploring finger vein based personal authentication for secure IoT. Future Gener. Comput. Syst. 77, 149–160 (2017)

    Article  Google Scholar 

  32. Jiang, Y., Yao, J., Qian, Z.: A method of forecasting thunderstorms and gale weather based on multisource convolution neural network. IEEE Access 7, 107695–107698 (2019)

    Google Scholar 

  33. Guo, Y., Zhuge, Q., Hu, J., et al.: Optimal data allocation for scratch-pad memory on embedded multi-core systems. In: IEEE ICPP Conference, pp. 464–471 (2011)

    Google Scholar 

  34. Wu, G., Zhang, H., et al.: A decentralized approach for mining event correlations in distributed system monitoring. JPDC 73(3), 330–340 (2013)

    MATH  Google Scholar 

  35. Zhao, H., Chen, M., et al.: A novel pre-cache schema for high performance Android system. Future Gener. Comput. Syst. 56, 766–772 (2016)

    Article  Google Scholar 

  36. Qiu, H., Qiu, M., Lu, Z.: Selective encryption on ECG data in body sensor network based on supervised machine learning. Inf. Fusion 55, 59–67 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Hu, D., Zhou, C., Xu, J. (2022). Thunderstorm Recognition Based on Neural Network PRDsNET Models. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics