Skip to main content

Link-Efficiency Multi-channel Transmission Protocol for Data Collection in UASNs

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

  • 1293 Accesses

Abstract

With the burgeoning of underwater Internet of things, the amount of data generated by sensor nodes increases dramatically in UASNs, requiring efficient data collection schemes. The data collection process mainly considers MAC and routing design to ensure the link efficiency of sensing data to the sink, which refers to collision avoidance and high bandwidth utilization at low signaling overhead. In recent underwater MAC designs, multi-channel schemes have been adopted as an effective way to eliminate collisions. However, existing multi-channel schemes face the problem of low bandwidth utilization, resulting in a reduction in the performance of network throughput and end-to-end delay. Besides, in the routing design, the unbalanced transfer load may lead to partial transmission congestion, which also decreases the overall bandwidth utilization. To solve the above problems, in this paper, we propose a Link-Efficiency Transmission Protocol (LETP). In the routing layer, we propose a forwarding node probabilistic selection approach to solve the unbalanced transfer load problem at low signaling overhead. In the MAC layer, with the assistance of routing information, a Link Efficiency Channel Allocation (LECA) algorithm with low signaling overhead is applied on receiver sides to allocate dedicated communication channels to senders and optimize the allocation decision based on channel characteristics. Simulation results verify that LETP achieves a better network performance in comparison with existing protocols.

This work is supported by the National Natural Science Foundation of China (NSFC) (Grants No. U19A2061, No. 61772228, No. 61902143), the Natural Science Foundation of Jilin Province, China under Grant No. YDZJ202101ZYTS191, Jilin Scientific and Technological Development Program (No. 2020122208JC), Research Project by the Education Department of Jilin Province (No. JJKH20211105KJ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouabdallah, F., Zidi, C., Boutaba, R., Mehaoua, A.: Collision avoidance energy efficient multi-channel MAC protocol for underwater acoustic sensor networks. IEEE Trans. Mob. Comput. 18(10), 2298ā€“2314 (2019). https://doi.org/10.1109/TMC.2018.2871686

    Article  Google Scholar 

  2. Chao, C.M., Wang, Y.Z., Lu, M.W.: Multiple-rendezvous multichannel MAC protocol design for underwater sensor networks. IEEE Trans. Syst. Man Cybern.: Syst 43(1), 128ā€“138 (2012)

    Article  Google Scholar 

  3. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795ā€“2808 (2016). https://doi.org/10.1109/TNET.2015.2487344

    Article  Google Scholar 

  4. Cho, J., Cho, H.S.: A multi-channel MAC protocol in underwater acoustic sensor networks. In: Proceedings of the 11th ACM International Conference on Underwater Networks & Systems, pp. 1ā€“2 (2016)

    Google Scholar 

  5. Gai, K., Qiu, M., Chen, L., Liu, M.: Electronic health record error prevention approach using ontology in big data. In: IEEE 17th HPCC Conference (2015)

    Google Scholar 

  6. Gai, K., Qiu, M., Elnagdy, S.: A novel secure big data cyber incident analytics framework for cloud-based cybersecurity insurance. In: IEEE BigDataSecurity Conference (2016)

    Google Scholar 

  7. Gai, K., Qiu, M., Zhao, H., Xiong, J.: Privacy-aware adaptive data encryption strategy of big data in cloud computing. In: IEEE 3rd CSCloud Conference (2016)

    Google Scholar 

  8. Gai, K., Qiu, M., Sun, X., Zhao, H.: Security and privacy issues: a survey on FinTech. In: SmartCom, pp. 236ā€“247 (2016)

    Google Scholar 

  9. Gao, M., Chen, Z., Yao, X., Xu, N.: JM-MAC: a JSW-based multi-channel MAC protocol in underwater acoustic sensor networks. In: 2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1ā€“6 (2016). https://doi.org/10.1109/ICSPCS.2016.7843373

  10. Guo, Y., Zhuge, Q., Hu, J., et al.: Data placement and duplication for embedded multicore systems with scratch pad memory. IEEE Trans. CAD (2013)

    Google Scholar 

  11. Javaid, N., Karim, O.A., Sher, A., Imran, M., Yasar, A.U.H., Guizani, M.: Q-learning for energy balancing and avoiding the void hole routing protocol in underwater sensor networks. In: 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 702ā€“706. IEEE (2018)

    Google Scholar 

  12. Khan, M.T.R., Ahmed, S.H., Kim, D.: AUV-aided energy-efficient clustering in the internet of underwater things. IEEE Trans. Green Commun. Netw. 3(4), 1132ā€“1141 (2019). https://doi.org/10.1109/TGCN.2019.2922278

    Article  Google Scholar 

  13. Lu, R., Jin, X., Zhang, S., Qiu, M., Wu, X.: A study on big knowledge and its engineering issues. IEEE Trans. Knowl. Data Eng. 31(9), 1630ā€“1644 (2018)

    Article  Google Scholar 

  14. Molins, M., Stojanovic, M.: Slotted FAMA: a MAC protocol for underwater acoustic networks. In: OCEANS 2006-Asia Pacific, pp. 1ā€“7. IEEE (2006)

    Google Scholar 

  15. Noh, Y., et al.: Dots: a propagation delay-aware opportunistic MAC protocol for mobile underwater networks. IEEE Trans. Mob. Comput. 13(4), 766ā€“782 (2014)

    Article  Google Scholar 

  16. Qiu, M., Khisamutdinov, E., et al.: RNA nanotechnology for computer design and in vivo computation (2013)

    Google Scholar 

  17. Qiu, M., Ming, Z., Li, J., Liu, J., Quan, G., Zhu, Y.: Informer homed routing fault tolerance mechanism for wireless sensor networks. J. Syst. Arch. 59(4ā€“5), 260ā€“270 (2013)

    Article  Google Scholar 

  18. Qiu, M., Ming, Z., Li, J., Liu, S., Wang, B., Lu, Z.: Three-phase time-aware energy minimization with DVFS and unrolling for chip multiprocessors. J. Syst. Archit. 58(10), 439ā€“445 (2012)

    Article  Google Scholar 

  19. Rahmati, M., Pompili, D.: Probabilistic spatially-divided multiple access in underwater acoustic sparse networks. IEEE Trans. Mob. Comput. 19(2), 405ā€“418 (2020)

    Article  Google Scholar 

  20. Stojanovic, M., Preisig, J.: Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun. Mag. 47(1), 84ā€“89 (2009). https://doi.org/10.1109/MCOM.2009.4752682

    Article  Google Scholar 

  21. Su, Y., Jin, Z.: UMMAC: a multi-channel MAC protocol for underwater acoustic networks. J. Commun. Netw. 18(1), 75ā€“83 (2016)

    Article  MathSciNet  Google Scholar 

  22. Tang, X., Li, K., et al.: A hierarchical reliability-driven scheduling algorithm in grid systems. J. Parallel Distrib. Comput. 72(4), 525ā€“535 (2012)

    Article  Google Scholar 

  23. Wei, X., et al.: A co-design-based reliable low-latency and energy-efficient transmission protocol for UWSNS. Sensors 20(21), 6370 (2020)

    Article  Google Scholar 

  24. Xie, P., Cui, J.-H., Lao, L.: VBF: vector-based forwarding protocol for underwater sensor networks. In: Boavida, F., Plagemann, T., Stiller, B., Westphal, C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 1216ā€“1221. Springer, Heidelberg (2006). https://doi.org/10.1007/11753810_111

    Chapter  Google Scholar 

  25. Xie, P., et al.: Aqua-sim: an NS-2 based simulator for underwater sensor networks. In: OCEANS 2009, pp. 1ā€“7. IEEE (2009)

    Google Scholar 

  26. Xu, Z., Chen, L., Chen, C., Guan, X.: Joint clustering and routing design for reliable and efficient data collection in large-scale wireless sensor networks. IEEE Internet Things J. 3(4), 520ā€“532 (2016). https://doi.org/10.1109/JIOT.2015.2482363

    Article  Google Scholar 

  27. Zhao, Z., Liu, C., Qu, W., Yu, T.: An energy efficiency multi-level transmission strategy based on underwater multimodal communication in UWSNS. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1579ā€“1587. IEEE (2020)

    Google Scholar 

  28. Zhou, Z., Peng, Z., Cui, J., Jiang, Z.: Handling triple hidden terminal problems for multichannel MAC in long-delay underwater sensor networks. IEEE Trans. Mob. Comput. 11(1), 139ā€“154 (2012). https://doi.org/10.1109/TMC.2011.28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, X., Wang, X., Xu, H., Wang, X., Guo, H. (2022). Link-Efficiency Multi-channel Transmission Protocol for Data Collection in UASNs. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics