Skip to main content

ML-ECN: Multilayer Emergency Communication Network Based on the Combination of Space and Earth

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

  • 1349 Accesses

Abstract

In recent years, major geological disasters have occurred, often accompanied by the massive destruction of infrastructure communication facilities. Therefore, quickly building an Emergency Communication Network (ECN) after a disaster is a key problem. At present, there are a variety of emergency communication network solutions, including Unmanned Aerial Vehicle (UAV) networks, satellite networks, wireless sensor networks, ground MESH networks, and so on. However, this kind of research rarely considers the comprehensive application of the abovementioned networks and the collaborative work between them. In this paper, an emergency communication network is proposed, which includes a wireless sensor network, ground MESH network, UAV MESH network, and satellite network. The multilayer network works together to ensure the smooth development of post-disaster rescue work. We also propose a location algorithm based on reverse verification, which relies mainly on wireless sensor networks. For network service quality, we propose an improved scheduling algorithm based on Weighted Deficit Round Robin (WDRR) and. Multiple measures are taken to ensure network Quality of Service (QoS). Numerical results show the superiority of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Masaracchia, A., Nguyen, L.D., Duong, T.Q., Nguyen, M.N.: An energy-efficient clustering and routing framework for disaster relief network. IEEE Access 7, 56520–56532 (2019)

    Article  Google Scholar 

  2. Deepak, G.C., Ladas, A., Sambo, Y., Pervaiz, H., Politis, C., Imran, M.: An overview of post-disaster emergency communication systems in the future networks. IEEE Wirel. Commun. 26(6), 132–139 (2019). https://doi.org/10.1109/MWC.2019.1800467

    Article  Google Scholar 

  3. Zhang, S., Liu, J.: Analysis and optimization of multiple unmanned aerial vehicle-assisted communications in post-disaster areas. IEEE Trans. Veh. Technol. 67(12), 12049–12060 (2018)

    Article  Google Scholar 

  4. Rohman, B.P.A., Andra, M.B., Putra, H.F., Fandiantoro, D.H., Nishimoto, M.: Multisensory surveillance UAV for survivor detection and geolocalization in complex post-disaster environment. In: Proceedings of the IGARSS, Yokohama, Japan, pp. 9368–9371 (2019)

    Google Scholar 

  5. Asuquo, P., Cruickshank, H., Ogah, C.P.A., Lei, A., Sun, Z.: A distributed trust management scheme for data forwarding in satellite DTN emergency communications. IEEE J. Sel. Areas Commun. 36(2), 246–256 (2018)

    Article  Google Scholar 

  6. Wang, J., Cheng, W., Zhang, H.: Caching and D2D assisted wireless emergency communications networks with statistical QoS provisioning. J. Commun. Inf. Netw. 5(3), 282–293 (2020)

    Google Scholar 

  7. Zhang, C., Dong, M., Ota, K.: Heterogeneous mobile networking for lightweight UAV assisted emergency communication. IEEE Trans. Green Commun. Netw 5(3), 1345–1356 (2021)

    Article  Google Scholar 

  8. Alsamhi, S.H., Almalki, F.A., Ma, O., Ansari, M.S., Angelides, M.C.: Performance optimization of tethered balloon technology for public safety and emergency communications. Telecommun. Syst. 75(2), 235–244 (2020)

    Article  Google Scholar 

  9. Ali, K., Nguyen, H.X., Vien, Q., Shah, P., Chu, Z.: Disaster management using D2D communication with power transfer and clustering techniques. IEEE Access 6, 14643–14654 (2018)

    Article  Google Scholar 

  10. Nishiyama, H., Rodrigues, T.G., Liu, J.: A Probabilistic approach to deploying disaster response network. IEEE Trans. Veh. Technol. 67(12), 12086–12094 (2018)

    Article  Google Scholar 

  11. Grilo, A., Macedo, M.M., Nunes, M.S.: IP QoS support in IEEE 802.11b WLANs. Comput. Commun. 26(17), 1918–1930 (2003)

    Article  Google Scholar 

  12. Cai, Q., Liu, Q.L., Ding, H.W., Zhou, J.: Polling MAC protocol implementation and performance analysis for emergency communication networks based on wireless radio stations. In: Proceedings of the 2nd WCSN, Chang Sha, China, pp. 216–226 (2016)

    Google Scholar 

  13. Pecorella, T., Ronga, L.S., Chiti, F., Jayousi, S., Franck, L.: Emergency satellite communications: research and standardization activities. IEEE Commun. Mag. 53(5), 170–177 (2015)

    Article  Google Scholar 

  14. Gomez, K., et al.: Aerial base stations with opportunistic links for next generation emergency communications. IEEE Commun. Mag. 54(4), 31–39 (2016)

    Article  Google Scholar 

  15. Zhao, Y., Liu, Z., Fan, X., Gao, P., Liu, T.: Design of a Ka broadband satellite communication antenna for low-earth-orbit constellation. In: Proceedings of the 12th ISAPE, Hangzhou, China, pp. 1–4 (2018)

    Google Scholar 

  16. Sun, Y., Chowdhury, K.R.: Enabling emergency communication through a cognitive radio vehicular network. IEEE Commun. Mag. 52(10), 68–75 (2014)

    Article  Google Scholar 

  17. Cao, X., Yang, P., Alzenad, M., Xi, X., Wu, D., Yanikomeroglu, H.: Airborne communication networks: a survey. IEEE J. Sel. Areas Commun. 36(9), 1907–1926 (2018)

    Article  Google Scholar 

  18. Verma, H., Chauhan, N.: MANET based emergency communication system for natural disasters. In: Proceedings of the 2015 ICCCA, Noida, India, pp. 480–485 (2015)

    Google Scholar 

  19. Mogale, T.H., Silva, B.J., Hancke, G.P.: A portable IR-UWB based WSN for personnel tracking in emergency scenarios. In: Proceeding of the 14th INDIN, Poitiers, France, pp. 961–965 (2016)

    Google Scholar 

  20. Qiu, M., Ming, Z., Li, J., Liu, J., Quan, G., Zhu, Y.: Informer homed routing fault tolerance mechanism for wireless sensor networks. J. Syst. Archit. 59(4–5), 260–270 (2013)

    Article  Google Scholar 

  21. Su, H., Qiu, M., Wang, H.: Secure wireless communication system for smart grid with rechargeable electric vehicles. IEEE Commun. Mag. 50(8), 62–68 (2012)

    Article  Google Scholar 

  22. Tang, X., Li, K., et al.: A hierarchical reliability-driven scheduling algorithm in grid systems. J. Parallel Distrib. Comput. 72(4), 525–535 (2012)

    Article  Google Scholar 

  23. Lu, Z., Wang, N., Wu, J., Qiu, M.: IoTDeM: an IoT big data-oriented MapReduce performance prediction extended model in multiple edge clouds. JPDC 118, 316–327 (2018)

    Google Scholar 

  24. Qiu, H., Qiu, M., Lu, Z.: Selective encryption on ECG data in body sensor network based on supervised machine learning. Inf. Fusion 55, 59–67 (2020)

    Article  Google Scholar 

  25. Zhang, Z., Wu, J., et al.: Jamming ACK attack to wireless networks and a mitigation approach. IEEE GLOBECOM Conference, pp. 1–5 (2008)

    Google Scholar 

  26. Qiu, L., Gai, K., Qiu, M.: Optimal big data sharing approach for tele-health in cloud computing. In: IEEE SmartCloud, pp. 184–189 (2016)

    Google Scholar 

  27. Thakur, K., Qiu, M., Gai, K., Ali, M.: An investigation on cyber security threats and security models. In: IEEE CSCloud (2015)

    Google Scholar 

  28. Niu, H., Zhao, X., Li, J.: 3D location and resource allocation optimization for UAV-enabled emergency networks under statistical QoS constraint. IEEE Access 9, 41566–41576 (2021)

    Article  Google Scholar 

  29. Khan, A., Aftab, F., Zhang, Z.: UAPM: an urgency-aware packet management for disaster management using flying ad-hoc networks. China Commun. 16(11), 167–182 (2019)

    Article  Google Scholar 

  30. Yang, B., Guo, L., Guo, R., Zhao, M., Zhao, T.: A novel trilateration algorithm for RSSI-based indoor localization. IEEE Sens. J. 20(14), 8164–8172 (2020)

    Article  Google Scholar 

  31. Qiu, M., Chen, Z., Liu, M.: Low-power low-latency data allocation for hybrid scratch-pad memory. IEEE Embed. Syst. Lett. 6(4), 69–72 (2014)

    Article  Google Scholar 

  32. Qiu, M., Xue, C., Shao, Z., Sha, E.: Energy minimization with soft real-time and DVS for uniprocessor and multiprocessor embedded systems. In: IEEE DATE Conference, pp. 1–6 (2007)

    Google Scholar 

  33. Liu, M., Zhang, S., et al.: H infinite state estimation for discrete-time chaotic systems based on a unified model. IEEE Trans. Syst. Man Cybern. (B) (2012)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Key Research and Development Project of China under Grants No. 2017YFB0504103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, L., Li, H., Zhou, J., Zhou, C., Shi, T. (2022). ML-ECN: Multilayer Emergency Communication Network Based on the Combination of Space and Earth. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics