Skip to main content

Fiber-Optic Sensor for Monitoring Radiation Level

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2021, ruSMART 2021)

Abstract

The necessity of improving the functional capabilities of the fiber-optic sensor for monitoring radioactive radiation is substantiated. The new method of constructing a communication lane with the fiber-optic sensor for controlling exposure dose of radiation in a range of its variations in several orders of magnitude in remote mode is proposed. The sensor design for long distance measurements (more than 10 km from laser transmitting module and photodetector) is developed. Particular attention to the implementation of long-term radiation situation control at high exposure doses of radiation is paid. Functional capabilities of the fiber-optic sensor are identified. The experimental results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kashaykin, P.F., Tomashuk, A.L., Vasiliev, S.A., Chikhray, Y.V., Semjonov, S.L.: Radiation resistance of single-mode optical fibres with view to in-reactor applications. Nucl. Mater. Energy 27, 100981 (2021)

    Article  Google Scholar 

  2. Tomashuk, A.L., et al.: Light absorption induced in undoped-silica-core panda-type birefringent optical fiber by pulsed action of ionizing radiation. Bull. Lebedev. Phys. Inst. 45(12), 385–388 (2018). https://doi.org/10.3103/S1068335618120047

    Article  Google Scholar 

  3. Myazin, N.S., Yushkova, V.V., Taranda, N.I., Rud, V.Yu.: On the need to control the state of the flowing media by the values of relaxation constants. In: Journal of Physics: Conference Series, vol. 1410, no. 1, p. 012130 (2019)

    Google Scholar 

  4. Davydov, R., Antonov, V., Makeev, S., Dudkin, V., Myazin, N.: New high-speed system for controlling the parameters of a nuclear reactor in a nuclear power plant. In: E3S Web of Conferences, vol. 140, p. 02001 (2019)

    Google Scholar 

  5. Myazin, N.S., Rud, V.Yu., Yushkova, V.V., Dudkin, V.I.: New method for determining the composition of liquid media during the express control of their state using the nuclear magnetic resonance phenomena. In: Journal of Physics: Conference Series, vol. 1400, no. 6, p. 066008 (2019)

    Google Scholar 

  6. Gryznova, E., Batov, Y., Myazin, N., Rud, V.: Methodology for assessing the environmental characteristics of various methods of generating electricity. In: E3S Web of Conferences, vol. 140, p. 09001 (2019)

    Google Scholar 

  7. Davydov, V.V., Myazin, N.S., Kiryukhin, A.V.: Nuclear-magnetic flowmeter-relaxometers for monitoring coolant and feedwater flow and status in NPP. At Energy 127(5), 274–279 (2020). https://doi.org/10.1007/s10512-020-00623-5

    Article  Google Scholar 

  8. Gryznova, E., Grebenikova, N., Ivanov, D., Bykov, V.: The study of the environmental efficiency of energy production from various sources of raw materials. In: IOP Conference Series: Earth and Environmental Science, vol. 390, no. 1, p. 012044 (2019)

    Google Scholar 

  9. Nikitina, M., Grebenikova, N., Dudkin, V., Batov, Y.: Methodology for assessing the adverse effects of the use of nuclear energy on agricultural land. In: IOP Conference Series: Earth and Environmental Science, vol. 390, no. 1, p. 012024 (2019)

    Google Scholar 

  10. Fadeenko, V., Fadeenko, I., Dudkin, V., Nikolaev, D.: Remote environmental monitoring in the area of a nuclear power plant. In: IOP Conference Series: Earth and Environmental Science, vol. 390, no. 1, p. 012022 (2019)

    Google Scholar 

  11. Fadeenko, V.B., Fadeenko, I.V., Vasiliev, D.A., Rud, V.Yu.: Investigation of radiation formation (plasmoid) in the air environment by radar method. In: Journal of Physics: Conference Series, vol. 1697, no. 1, p. 012057 (2020)

    Google Scholar 

  12. Al-Bahri, M., Ruslan, K., Aleksey, B.: Integrating Internet of Things with the digital object architecture. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 540–547. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_47

    Chapter  Google Scholar 

  13. Pirmagomedov, R., Kirichek, R., Blinnikov, M., Koucheryavy, A.: UAV-based gateways for wireless nanosensor networks deployed over large areas. Comput. Commun. 146, 55–62 (2019)

    Article  Google Scholar 

  14. Moroz, A., Davydov, R., Davydov, V.: A new scheme for transmitting heterodyne signals based on a fiber-optical transmission system for receiving antenna devices of radar stations and communication systems. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 710–718. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_62

    Chapter  Google Scholar 

  15. Makolkina, M., Pham, V., Kirichek, R., Gogol, A., Koucheryavy, A.: Interaction of AR and IoT applications on the basis of hierarchical cloud services. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 547–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_49

    Chapter  Google Scholar 

  16. Ateya, A.A., Muthanna, A., Gudkova, I., Abuarqoub, A., Vybornova, A., Koucheryavy, A.: Development of intelligent core network for tactile internet and future smart systems. J. Sens. Actuator Netw. 7(1), 7 (2018)

    Article  Google Scholar 

  17. Ateya, A., Muthanna, A., Vybornova, A., Darya, P., Koucheryavy, A.: Energy - aware offloading algorithm for multi-level cloud based 5G system. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 355–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_33

    Chapter  Google Scholar 

  18. Elokhin, A.P., Zhilina, M.V.: Determination of gas-aerosol radioactive impurity characteristics from arms γ-ray detector indications. Atom. Energy 112(4), 269–280 (2012)

    Article  Google Scholar 

  19. Fadeenko, V.B., Fadeenko, I.V., Vasiliev, D.A., Yu Rud, V.: Multifunctional radar system for remote control of environment and the Earth’s surface. In: Journal of Physics: Conference Series, vol. 1745, no. 1, p. 012023 (2021)

    Google Scholar 

  20. Tomashuk, A.L., Kashaykin, P.F., Semjonov, S.L., Kolosovskii, A.O., Chamorovskiy, Y.: Pulsed-X-ray-irradiation of radiation-resistant PANDA fibers: dependence on dose, probe light power, and temperature. Opt. Mater. 109, 110384 (2020)

    Article  Google Scholar 

  21. Dmitrieva, D.S., Pilipova, V.M., Rud, V.Y.: Fiber-optical communication line with a system for compensation of radiation-induced losses during the transmission of information. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2020, ruSMART 2020, vol. 12526, pp. 348–356 (2020)

    Google Scholar 

  22. Dmitrieva, D.S., Pilipova, V.M., Davydov, V.V., Valiullin, L.R.: About compensation of radiation - induced losses in optical fibers. In: Journal of Physics: Conference Series, vol. 1695, no. 1, p. 012130 (2020)

    Google Scholar 

  23. Kashaykin, P.F., Tomashuk, A.L., Khopin, V.F., Semjonov, S.L., Dianov, E.M.: New radiation colour centre in germanosilicate glass fibres. Quantum Electron. 48(12), 1143–1146 (2018)

    Article  Google Scholar 

  24. Dmitrieva, D.S., Pilipova, V.M., Dudkin, V.I., Davydov, V.V., Rud, V.Yu.: The possibility of controlling the relaxation rate of color centers in the optical fibers. In: Journal of Physics: Conference Series, vol. 1697, no. 1, p. 012145 (2020)

    Google Scholar 

  25. Dmitrieva, D., Pilipova, V., Andreeva, E., Dudkin, V., Davydov, V.: Method for determination of negative influence to γ - radiation on fiber optic information transmission systems. In: Proceedings of ITNT 2020 - 6th IEEE International Conference on Information Technology and Nanotechnology, Samara, Russia, vol. 9253348. IEEE (2020)

    Google Scholar 

  26. Tomashuk, A.L., Filippov, A.V., Kashaykin, P.F., Guryanov, A.N., Semjonov, S.L.: 1.55-μm-light absorption induced by pulsed-X-ray radiation in pure-silica-core fiber: effects of light power and temperature. In: J. Non-Crystal. Solids 521, 119504 (2019)

    Google Scholar 

  27. Kashaikin, P.F., Tomashuk, A.L., Salganskii, M.Y., Gur’yanov, A.N., Dianov, E.M.: Prediction of radiation-induced light absorption in optical fibers with an undoped silica core for space applications. Tech. Phys. 64(5), 701–707 (2019). https://doi.org/10.1134/S1063784219050098

    Article  Google Scholar 

  28. Davydov, R.V., Dmitrieva, D.S., Pilipova, V.M., Dudkin, V.I., Andreeva, E.I.: The research of radioactive exposure compensation on optical material for optical fibers by powerful laser radiation. In: Proceedings - International Conference Laser Optics 2020, ICLO 2020, Saint-Petersburg, Russia, vol. 9285820. IEEE (2020)

    Google Scholar 

  29. Tarasenko, M.Yu., Sharova, N.V., Lenets, V.A.: Feature of use direct and external modulation in fiber optical simulators of a false target for testing radar station. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART 2017, NsCC 2017, NEW2AN 2017, vol. 8638, pp. 227–232 (2017). https://doi.org/10.1007/978-3-319-67380-6_21

  30. Davydov, R.V., et al.: Fiber-optic transmission system for the testing of active phased antenna arrays in an anechoic chamber. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 177–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana S. Dmitrieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dmitrieva, D.S., Pilipova, V.M., Dudkin, V.I., Davydov, R.V., Davydov, V.V. (2022). Fiber-Optic Sensor for Monitoring Radiation Level. In: Koucheryavy, Y., Balandin, S., Andreev, S. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2021 2021. Lecture Notes in Computer Science(), vol 13158. Springer, Cham. https://doi.org/10.1007/978-3-030-97777-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97777-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97776-4

  • Online ISBN: 978-3-030-97777-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics