Skip to main content

Fiber-Optic Recirculating Memory Loop for Wideband Microwave Signal

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2021, ruSMART 2021)

Abstract

A fiber-optic recirculating delay line for wideband microwave signals is described. The core of delay line is an analogue wideband fiber-optic link, with two radio frequency switches at input and output of fiber-optic link. The link itself is intensity modulated direct detection type one with an integrated-optical Mach-Zehnder modulator. The delay medium is single mode fiber; its length determines the minimum delay time – time discrete. Switches control allows to realize recirculation throw an analogue wideband fiber-optic link. So, the total time delay is controlled in steps: multiples of the time discrete. In recirculation loop a back arm is radio frequency path, so in this arm we use additional radio frequency amplifier to adjust recirculation loop gain close to 1. We pay attention to adjusting recirculation loop gain – theoretically and in experiments in lab setup. We exam coupling between maximum number of recirculation and recirculation loop gain, and also influence of gain unflatness across frequency bandwidth. Lab setup has instantaneous bandwidth 0.5…14 GHz, limited by used radio frequency switches. Two fibers with length approx. 25 m and 100 m were used in lab setup. Time control for switches was from FPGA based time control unit with time discrete 2 ns. The number of recirculation in the memory loop varied from 1 to 30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Skolnik, M.: Radar Handbook, 3rd edn. McGraw-Hill Companies, New York (2008)

    Google Scholar 

  2. Urick, V.J., McKinney, J.D., Williams, K.J.: Fundamentals of Microwave Photonics. Wiley, Hoboken (2015)

    Book  Google Scholar 

  3. Tsui, J.B.: Microwave Receivers with Electronic Warfare Applications. SciTech Publishing, Raleigh (2005)

    Book  Google Scholar 

  4. Poisel, R.A.: Electronic Warfare Receivers and Receiver Systems, 3rd edn. Artech House, Boston (2014)

    Google Scholar 

  5. Yao, J.: Microwave photonics. IEEE J. Lightwave Technol. 27(3), 314–335 (2009)

    Article  Google Scholar 

  6. Berceli, T., Herczfeld, P.R.: Microwave photonics – a historical perspective. IEEE Trans. Microw. Theory Tech. 65(5), 1891–1903 (2017)

    Article  Google Scholar 

  7. Minasian, R.A., Chan, E.H.W., Yi, X.: Microwave photonic signal processing. Opt. Express 21(19), 22918–22936 (2013)

    Article  Google Scholar 

  8. Diehl, J.F., Singley, J.M., Sunderman, C.E., Urick, V.J.: Microwave photonic delay line signal processing. Appl. Opt. 54(31), F35–F41 (2015)

    Article  Google Scholar 

  9. Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., Sales, S.: Microwave photonic signal processing. J. Lightwave Technol. 31, 571–586 (2013)

    Article  Google Scholar 

  10. Belkin, M.E., Fofanov, D., Sigov, A.: Microwave photonics approach as a novel smart fabrication technique of a radio communication jammers. Procedia Comput. Sci. 180, 950–957 (2021)

    Article  Google Scholar 

  11. Volkov, V.A., Gordeev, D.A., Ivanov, S.I., Lavrov, A.P., Saenko, I.I.: Photonic beamformer model based on analog fiber-optic links’ components. J. Phys. Conf. Ser. 737, 012002 (2016). https://doi.org/10.1088/1742-6596/737/1/012002

  12. Ivanov, S.I., Lavrov, A.P., Saenko, I.I., Filatov, D.L.: Chirped fiber grating beamformer for linear phased array antenna. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 594–604. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_53

    Chapter  Google Scholar 

  13. Zmuda, H., Fanto, M., McEwen, T., Pawloski, J., Norelli, K.: A photonic recirculating delay line for analog-to-digital conversion and other applications. Proc. SPIE 6975, 69750F (2008). https://doi.org/10.1117/12.783962

    Article  Google Scholar 

  14. Shahoei, H., Yao, J.: Delay lines. In: Webster, J. (ed.) Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–15. Wiley, Hoboken (2014). https://doi.org/10.1002/047134608X.W8234

  15. Belkin, M.E.: Ultra-wideband long-term RF-signal delay devices: optimal decisions analysis. Infocommun. Radio Technol. 1(1) 103–120 (2018). https://doi.org/10.15826/icrt.2018.01.1.08. (in Russian)

  16. Riza, N.A.: Selected Papers on Photonic Control Systems for Phased Array Antennas. SPIE Press, vol. MS136 (1997)

    Google Scholar 

  17. Ghavami, M., Michael, L.B., Kohno, R.: Ultra Wideband Signals and Systems in Communication Engineering. Wiley, Chichester (2004)

    Book  Google Scholar 

  18. Immoreev, I., Tao, T.: UWB radar for patient monitoring. IEEE Aerosp. Electron. Syst. Mag. 23(11), 11–18 (2008). https://doi.org/10.1109/MAES.2008.4693985

    Article  Google Scholar 

  19. Iezekiel, S.: Microwave Photonics: Devices and Applications. Wiley, Chichester (2009)

    Book  Google Scholar 

  20. Ghelfi, P., et al.: A fully photonics-based coherent radar system. Nature 57, 341–345 (2014). https://doi.org/10.1038/nature13078

    Article  Google Scholar 

  21. Kashyap, R.: Fiber Bragg Gratings, 2nd edn. Elsevier, Amsterdam (2009)

    Google Scholar 

  22. Egorova, O.N., Astapovich, M.S., Belkin, M.E., Semjonov, S.L.: Multicore optical fibre and fibre-optic delay line based on it. Quantum Electron. 46(12), 1134–1138 (2016). https://doi.org/10.1070/QEL16224

    Article  Google Scholar 

  23. Gasulla, I., Capmany, J.: Microwave photonics applications of multicore fibers. IEEE Photonics J. 4(3), 877–888 (2012). https://doi.org/10.1109/JPHOT.2012.2199101

    Article  Google Scholar 

  24. https://agiltron.com/category/fiber-optic-switches/nanospeed-fiber-optical-switches. Accessed 08 July 2021

  25. https://www.sercalo.com/products/mems-switches-products. Accessed 08 July 2021

  26. https://lunainc.com/sites/default/files/assets/files/data-sheets/FST-001%20Data%20Sheet.pdf. Accessed 08 July 2021

  27. Lavrov, A., Ivanov, S., Saenko, I.: Measurements and stabilization of the radio signals time delay when their transmitting over long wideband analog fiber optics links. In: 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), pp. 50–53 (2019). https://doi.org/10.1109/EExPolytech.2019.8906807

  28. Vekshin, Yu.V., Tsaruk, A.A., Vytnov, A.V., Zotov, M.B., Karpichev, A.S., Khvostov, Y.Y.: Fiber optic transmission lines for the radio astronomy receivers. Trans. IAA RAS (50), 16–22 (2019). https://doi.org/10.32876/ApplAstron.50.16-22

  29. Shillue, B., et al.: The ALMA photonic local oscillator system. Proc. SPIE 8452, 845216 (2012)

    Google Scholar 

  30. Podstrigaev, A.S., Lukiyanov, A.S., Galichina, A.A., Lavrov, A.P., Parfenov, M.V.: Wideband tunable delay line for microwave signals based on RF photonic components. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) Internet of Things, Smart Spaces, and Next Generation Networks and Systems, pp. 424–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65726-0_38

    Chapter  Google Scholar 

  31. Kondakov, D.V., Ivanov, S.I., Lavrov, A.P.: A broadband analog fiber-optic line with recirculating memory loop for variable microwave signal delay. J. Phys. Conf. Ser. (2021)

    Google Scholar 

  32. Newberg, I.L., Gee, C.M., Thurmond, G.D., Yen, H.W.: Long microwave delay fiberoptic link for radar testing. IEEE Trans. Microw. Theory Tech. 38(5), 664–666 (1990)

    Article  Google Scholar 

  33. Wurtz, L.T., Wheless, W.P.: Design of a programmable 2–18 GHz microwave fiber-optic delay line. In: IEEE Southeastcon 1997 Conference, pp. 11–19 (1997). https://doi.org/10.1109/SECON.1997.598600

  34. Koffman, I., Herczfeld, P.R., Daryoush, A.S., Even-Or, B., Markowitz, R.: A fiber optic recirculating memory loop for radar applications. Microw. Opt. Technol. Lett. 1(7), 232–235 (1988)

    Article  Google Scholar 

  35. Singley, J., Diehl, J., McDermitt, C., Sunderman, C., Urick, V.: Design and performance of a 560-microsecond Ku-band binary fiber-optic delay line. NRL Memorandum Report, NRL/MR/5650-14-9545 (2014)

    Google Scholar 

  36. Nguyen, T.A., Chan, E.H.W., Minasian, R.A.: Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure. J. Lightwave Technol. 32(20), 3831–3838 (2014)

    Article  Google Scholar 

  37. Vizoso, B., Vfizquez, C., Civera, R., Lopez-Amo, M., Muriel, M.A.: Amplified fiber-optic recirculating delay lines. J. Lightwave Technol. 12(2), 294–305 (1994)

    Article  Google Scholar 

  38. Optiva OTS-2 18 GHz Unamplified Microwave Band Fiber Optic Links. https://emcore.com/wp-content/uploads/2016/03/Optiva-OTS-2-18GHz-Unamplified.pdf. Accessed 10 July 2021

  39. Ivanov, S.I., Lavrov, A.P., Saenko, I.I.: Main characteristics study of analog fiber-optic links with direct and external modulation in transmitter modules. In: 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), pp. 264–267 (2018). https://doi.org/10.1109/EExPolytech.2018.8564391

  40. Switch HMC347ALP3E datasheet. https://www.analog.com/en/products/hmc347alp3e.html. Accessed 10 July 2021

  41. Ivanov, S.I., Lavrov, A.P., Saenko, I.I.: Investigation of key components of photonic beamforming system for receiving antenna array. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 679–688. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_61

    Chapter  Google Scholar 

  42. S5085 2-Port 8.5 GHz Analyzer. Extended Specification Sheets. https://coppermountaintech.com, https://online.fliphtml5.com/pbaab/jjxa/#p=1. Accessed 10 Apr 2021

  43. Varlamov, A.V., Ivanov, S.I., Lavrov, A.P., Shamray, A.V.: Time-frequency analysis of acoustic waves in an integrated acousto-optical modulator based on LiNbO3 crystal. J. Phys. Conf. Ser. 1697, 012174 (2020). https://doi.org/10.1088/1742-6596/1697/1/01217

  44. Siebert, W.McC.: Circuits, Signals, and Systems, vol. 2. The MIT Press, Cambridge; London (1988)

    Google Scholar 

  45. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York; London (1963)

    MATH  Google Scholar 

  46. Privalov, V.E., Shemanin, V.G.: Lidar system for monitoring radioactive contamination of atmospheric air. J. Opt. Technol. 84(5), 289–293 (2017). https://doi.org/10.1364/JOT.84.000289

    Article  Google Scholar 

  47. Markvart, A.A., Liokumovich, L.B., Ushakov, N.A.: Tunable optical delay lines based on a system of coupled whispering gallery mode resonators. J. Phys. Conf. Ser. 1326, 012017 (2019)

    Google Scholar 

Download references

Acknowledgments

This research was funded by RFBR, project number 20-07-00928.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei I. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, S.I., Lavrov, A.P., Kondakov, D.V., Matveev, Y.A. (2022). Fiber-Optic Recirculating Memory Loop for Wideband Microwave Signal. In: Koucheryavy, Y., Balandin, S., Andreev, S. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2021 2021. Lecture Notes in Computer Science(), vol 13158. Springer, Cham. https://doi.org/10.1007/978-3-030-97777-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97777-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97776-4

  • Online ISBN: 978-3-030-97777-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics