Abstract
This work is devoted to the study of biomolecular films for the development of biomolecular electronics functional devices. It is shown that the properties of biomolecular films indicate the formation of spatial structures in dry films. Experimental studies of the formation of structures in dehydrated films have been carried out at various concentrations of protein and salt in the initial solutions. To quantitatively estimate the energies of protein nanosystems, computational experiments were carried out using the method of molecular modeling. A description of the obtained experimental results is given, further fields of research are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chiralt, A., González-MartÃnez, C., Vargas, M., Atarés, L.: Edible films and coatings from proteins. Elsevier Ltd. (2018). https://doi.org/10.1016/B978-0-08-100722-8.00019-X
Alessandrini, A., Gerunda, M., Facci, P.: Tuning molecular orientation in protein films. Surface Sci. 542, 64–71 (2003). https://doi.org/10.1016/S0039-6028(03)00922-1
Velichko, E., Zezina, T., Baranov, M., Nepomnyashchaya, E., Tsybin, O.: Dynamics of polypeptide cluster dipole moment for nano communication applications. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 675–682. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_62
Bibi, F., Villain, M., Guillaume, C., Sorli, B., Gontard, N.: A review: origins of the dielectric properties of proteins and potential development as bio-sensors. Sensors 16, 1232 (2016). mdpi.com, https://doi.org/10.3390/s16081232
Allouche, A.: Software news and updates Gabedit — a graphical user interface for computational chemistry softwares. J. Comput. Chem. 32, 174–182 (2012). https://doi.org/10.1002/jcc
Velichko, E., Tsybin, O.: Biomolecular Electronics. Introduction (2011)
Baev, A., Prasad, P.N., Ågren, H., Samoć, M., Wegener, M.: Metaphotonics: an emerging field with opportunities and challenges. Phys. Rep. 594, 1–60 (2015). https://doi.org/10.1016/j.physrep.2015.07.002
Wang, N., Yang, A., Fu, Y., Li, Y., Yan, F.: Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 52(2), 277–287 (2019). https://doi.org/10.1021/acs.accounts.8b00448
Siqueira, J.R., Caseli, L., Crespilho, F.N., Zucolotto, V., Oliveira, O.N.: Immobilization of biomolecules on nanostructured films for biosensing. Biosens. Bioelectron. 25, 1254–1263 (2010). https://doi.org/10.1016/j.bios.2009.09.043
Torculas, M., Medina, J., Xue, W., Hu, X.: Protein-based bioelectronics. ACS Biomater. Sci. Eng. 2, 1211–1223 (2016). https://doi.org/10.1021/acsbiomaterials.6b00119
Amdursky, N., GÅ‚owacki, E.D., Meredith, P., Amdursky, N., GÅ‚owacki, E.D., Meredith, P.: Macroscale biomolecular electronics and ionics. Wiley Online Libr. 31, 1802221 (2018). https://doi.org/10.1002/adma.201802221
Withayachumnankul, W., O’Hara, J.F., Cao, W., Al-Naib, I., Zhang, W.: Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy. Opt. Express 22, 972 (2014). https://doi.org/10.1364/oe.22.000972
Mohan, A., Rajendran, S.R.C.K., He, Q.S., Bazinet, L., Udenigwe, C.C.: Encapsulation of food protein hydrolysates and peptides: a review. RSC Adv. 5, 79270–79278 (2015). https://doi.org/10.1039/c5ra13419f
Xin, S., Li, X., Wang, Q., Al., E.: Novel layer by layer structured nanofibrous mats coated by protein films for dermal regeneration. J. Biomed. Nanotechnol. 10, 803–810 (2014)
Guvendiren, M., Yang, S., Burdick, J.A.: Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Wiley Online Libr. 19, 3038–3045 (2009). https://doi.org/10.1002/adfm.200900622
Baranov, M., Velichko, E., Greshnevikov, K.: Analysis of fractal structures in dehydrated films of protein solutions. Symmetry 13, 123 (2021). mdpi.com, https://doi.org/10.3390/sym13010123
Velichko, E., Nepomnyashchaya, E., Baranov, M.: Study of self-assembled molecular films as a method of search for promising materials in nanoelectronics and nanocommunications. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 691–701. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_64
Baranov, M., Velichko, E., Shariaty, F.: Determination of geometrical parameters in blood serum films using an image segmentation algorithm. Opt. Mem. Neural Netw. (Inf. Opt.) 29, 330–335 (2020). https://doi.org/10.3103/S1060992X20040037
Baranov, M.A., Rozov, S.V.: Study of the dielectric parameters of biological liquids. J. Phys. Conf. Ser. 1326, 012006 (2019). https://doi.org/10.1088/1742-6596/1326/1/012006
Baranov, M.A., Klimchitskaya, G.L., Mostepanenko, V.M., Velichko, E.N.: Fluctuation-induced free energy of thin peptide films. Phys. Rev. E. 99, 022410 (2019). https://doi.org/10.1103/PhysRevE.99.022410
Baranov, M., Velichko, E., Rozov, S.: Dehydrated films of protein solutions: structural properties. St. Petersburg Polytech. State Univ. J. Phys. Math. 12, 25–37 (2019). https://doi.org/10.18721/JPM.12403
Baranov, M., Tsybin, O., Velichko, E.: Structured biomolecular films for microelectronics. St. Petersburg Polytech. State Univ. J. Phys. Math. 14, 85–99 (2021). https://doi.org/10.18721/JPM.14106
Baranov, M.A., Dudina, A.I., Nepomnyaschaya, E.K.: Optical analysis of protein-metal interactions. J. Phys. Conf. Ser. 1226, 012005 (2019). https://doi.org/10.1088/1742-6596/1226/1/012005
Taylor, P.A., Jayaraman, A.: Molecular modeling and simulations of peptide-polymer conjugates. Annu. Rev. Chem. Biomol. Eng. 11, 257–276 (2020)
Proaño, J., Salgado, P.: Physical, structural and antioxidant properties of brewer’s spent grain protein films. Wiley Online Libr. 100, 5458–5465 (2020). https://doi.org/10.1002/jsfa.10597
Sarıcaoglu, F.: Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packag. Shelf Life 25, 100527 (2020). Elsevier
Smith, A.F., et al.: Bioelectronic protein nanowire sensors for ammonia detection. Nano Res. 13(5), 1479–1484 (2020). https://doi.org/10.1007/s12274-020-2825-6
Liu, X., Fu, T., Ward, J., Gao, H.: Multifunctional protein nanowire humidity sensors for green wearable electronics. Wiley Online Libr. 6, 2000721 (2020). https://doi.org/10.1002/aelm.202000721
Phillips, J.C., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). https://doi.org/10.1002/jcc.20289
Wang, Y., Harrison, C.B., Schulten, K., McCammon, J.A.: Implementation of accelerated molecular dynamics in NAMD. Comput. Sci. Discov. 4, 015002 (2011). https://doi.org/10.1088/1749-4699/4/1/015002
Velichko, E.N., Baranov, M.A., Mostepanenko, V.M.: Change of sign in the Casimir interaction of peptide films deposited on a dielectric substrate. Mod. Phys. Lett. A. 35, 1–6 (2020). https://doi.org/10.1142/S0217732320400209
Acknowledgments
This research was funded by RSF, grant number â„–21-72-20029. The results of the work were obtained using computational resources of Peter the Great Saint-Petersburg Polytechnic University Supercomputing Center (www.spbstu.ru).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Baranov, M., Velichko, E. (2022). Investigation Methods of Dehydrated Protein Films for Biomolecular Electronics. In: Koucheryavy, Y., Balandin, S., Andreev, S. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2021 2021. Lecture Notes in Computer Science(), vol 13158. Springer, Cham. https://doi.org/10.1007/978-3-030-97777-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-97777-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97776-4
Online ISBN: 978-3-030-97777-1
eBook Packages: Computer ScienceComputer Science (R0)