Skip to main content

Investigation Methods of Dehydrated Protein Films for Biomolecular Electronics

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2021, ruSMART 2021)

Abstract

This work is devoted to the study of biomolecular films for the development of biomolecular electronics functional devices. It is shown that the properties of biomolecular films indicate the formation of spatial structures in dry films. Experimental studies of the formation of structures in dehydrated films have been carried out at various concentrations of protein and salt in the initial solutions. To quantitatively estimate the energies of protein nanosystems, computational experiments were carried out using the method of molecular modeling. A description of the obtained experimental results is given, further fields of research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiralt, A., González-Martínez, C., Vargas, M., Atarés, L.: Edible films and coatings from proteins. Elsevier Ltd. (2018). https://doi.org/10.1016/B978-0-08-100722-8.00019-X

  2. Alessandrini, A., Gerunda, M., Facci, P.: Tuning molecular orientation in protein films. Surface Sci. 542, 64–71 (2003). https://doi.org/10.1016/S0039-6028(03)00922-1

    Article  Google Scholar 

  3. Velichko, E., Zezina, T., Baranov, M., Nepomnyashchaya, E., Tsybin, O.: Dynamics of polypeptide cluster dipole moment for nano communication applications. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 675–682. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_62

    Chapter  Google Scholar 

  4. Bibi, F., Villain, M., Guillaume, C., Sorli, B., Gontard, N.: A review: origins of the dielectric properties of proteins and potential development as bio-sensors. Sensors 16, 1232 (2016). mdpi.com, https://doi.org/10.3390/s16081232

  5. Allouche, A.: Software news and updates Gabedit — a graphical user interface for computational chemistry softwares. J. Comput. Chem. 32, 174–182 (2012). https://doi.org/10.1002/jcc

    Article  Google Scholar 

  6. Velichko, E., Tsybin, O.: Biomolecular Electronics. Introduction (2011)

    Google Scholar 

  7. Baev, A., Prasad, P.N., Ågren, H., Samoć, M., Wegener, M.: Metaphotonics: an emerging field with opportunities and challenges. Phys. Rep. 594, 1–60 (2015). https://doi.org/10.1016/j.physrep.2015.07.002

    Article  MathSciNet  Google Scholar 

  8. Wang, N., Yang, A., Fu, Y., Li, Y., Yan, F.: Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 52(2), 277–287 (2019). https://doi.org/10.1021/acs.accounts.8b00448

  9. Siqueira, J.R., Caseli, L., Crespilho, F.N., Zucolotto, V., Oliveira, O.N.: Immobilization of biomolecules on nanostructured films for biosensing. Biosens. Bioelectron. 25, 1254–1263 (2010). https://doi.org/10.1016/j.bios.2009.09.043

    Article  Google Scholar 

  10. Torculas, M., Medina, J., Xue, W., Hu, X.: Protein-based bioelectronics. ACS Biomater. Sci. Eng. 2, 1211–1223 (2016). https://doi.org/10.1021/acsbiomaterials.6b00119

    Article  Google Scholar 

  11. Amdursky, N., GÅ‚owacki, E.D., Meredith, P., Amdursky, N., GÅ‚owacki, E.D., Meredith, P.: Macroscale biomolecular electronics and ionics. Wiley Online Libr. 31, 1802221 (2018). https://doi.org/10.1002/adma.201802221

    Article  Google Scholar 

  12. Withayachumnankul, W., O’Hara, J.F., Cao, W., Al-Naib, I., Zhang, W.: Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy. Opt. Express 22, 972 (2014). https://doi.org/10.1364/oe.22.000972

    Article  Google Scholar 

  13. Mohan, A., Rajendran, S.R.C.K., He, Q.S., Bazinet, L., Udenigwe, C.C.: Encapsulation of food protein hydrolysates and peptides: a review. RSC Adv. 5, 79270–79278 (2015). https://doi.org/10.1039/c5ra13419f

    Article  Google Scholar 

  14. Xin, S., Li, X., Wang, Q., Al., E.: Novel layer by layer structured nanofibrous mats coated by protein films for dermal regeneration. J. Biomed. Nanotechnol. 10, 803–810 (2014)

    Google Scholar 

  15. Guvendiren, M., Yang, S., Burdick, J.A.: Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Wiley Online Libr. 19, 3038–3045 (2009). https://doi.org/10.1002/adfm.200900622

    Article  Google Scholar 

  16. Baranov, M., Velichko, E., Greshnevikov, K.: Analysis of fractal structures in dehydrated films of protein solutions. Symmetry 13, 123 (2021). mdpi.com, https://doi.org/10.3390/sym13010123

  17. Velichko, E., Nepomnyashchaya, E., Baranov, M.: Study of self-assembled molecular films as a method of search for promising materials in nanoelectronics and nanocommunications. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 691–701. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_64

    Chapter  Google Scholar 

  18. Baranov, M., Velichko, E., Shariaty, F.: Determination of geometrical parameters in blood serum films using an image segmentation algorithm. Opt. Mem. Neural Netw. (Inf. Opt.) 29, 330–335 (2020). https://doi.org/10.3103/S1060992X20040037

    Article  Google Scholar 

  19. Baranov, M.A., Rozov, S.V.: Study of the dielectric parameters of biological liquids. J. Phys. Conf. Ser. 1326, 012006 (2019). https://doi.org/10.1088/1742-6596/1326/1/012006

    Article  Google Scholar 

  20. Baranov, M.A., Klimchitskaya, G.L., Mostepanenko, V.M., Velichko, E.N.: Fluctuation-induced free energy of thin peptide films. Phys. Rev. E. 99, 022410 (2019). https://doi.org/10.1103/PhysRevE.99.022410

    Article  Google Scholar 

  21. Baranov, M., Velichko, E., Rozov, S.: Dehydrated films of protein solutions: structural properties. St. Petersburg Polytech. State Univ. J. Phys. Math. 12, 25–37 (2019). https://doi.org/10.18721/JPM.12403

  22. Baranov, M., Tsybin, O., Velichko, E.: Structured biomolecular films for microelectronics. St. Petersburg Polytech. State Univ. J. Phys. Math. 14, 85–99 (2021). https://doi.org/10.18721/JPM.14106

  23. Baranov, M.A., Dudina, A.I., Nepomnyaschaya, E.K.: Optical analysis of protein-metal interactions. J. Phys. Conf. Ser. 1226, 012005 (2019). https://doi.org/10.1088/1742-6596/1226/1/012005

    Article  Google Scholar 

  24. Taylor, P.A., Jayaraman, A.: Molecular modeling and simulations of peptide-polymer conjugates. Annu. Rev. Chem. Biomol. Eng. 11, 257–276 (2020)

    Article  Google Scholar 

  25. Proaño, J., Salgado, P.: Physical, structural and antioxidant properties of brewer’s spent grain protein films. Wiley Online Libr. 100, 5458–5465 (2020). https://doi.org/10.1002/jsfa.10597

    Article  Google Scholar 

  26. Sarıcaoglu, F.: Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packag. Shelf Life 25, 100527 (2020). Elsevier

    Google Scholar 

  27. Smith, A.F., et al.: Bioelectronic protein nanowire sensors for ammonia detection. Nano Res. 13(5), 1479–1484 (2020). https://doi.org/10.1007/s12274-020-2825-6

    Article  Google Scholar 

  28. Liu, X., Fu, T., Ward, J., Gao, H.: Multifunctional protein nanowire humidity sensors for green wearable electronics. Wiley Online Libr. 6, 2000721 (2020). https://doi.org/10.1002/aelm.202000721

    Article  Google Scholar 

  29. Phillips, J.C., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). https://doi.org/10.1002/jcc.20289

    Article  Google Scholar 

  30. Wang, Y., Harrison, C.B., Schulten, K., McCammon, J.A.: Implementation of accelerated molecular dynamics in NAMD. Comput. Sci. Discov. 4, 015002 (2011). https://doi.org/10.1088/1749-4699/4/1/015002

    Article  Google Scholar 

  31. Velichko, E.N., Baranov, M.A., Mostepanenko, V.M.: Change of sign in the Casimir interaction of peptide films deposited on a dielectric substrate. Mod. Phys. Lett. A. 35, 1–6 (2020). https://doi.org/10.1142/S0217732320400209

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by RSF, grant number â„–21-72-20029. The results of the work were obtained using computational resources of Peter the Great Saint-Petersburg Polytechnic University Supercomputing Center (www.spbstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Baranov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baranov, M., Velichko, E. (2022). Investigation Methods of Dehydrated Protein Films for Biomolecular Electronics. In: Koucheryavy, Y., Balandin, S., Andreev, S. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2021 2021. Lecture Notes in Computer Science(), vol 13158. Springer, Cham. https://doi.org/10.1007/978-3-030-97777-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97777-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97776-4

  • Online ISBN: 978-3-030-97777-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics