Abstract
An algorithm for coherent element-by-element detection with decision feedback is proposed for signals with non-orthogonal subcarrier frequency spacing. The simulation results in the Matlab environment show that the proposed algorithm is quite effective. The admissible boundary values of the signal-to-noise ratio are determined, at which the effect of the error burst is manifested. The error burst of decision feedback affects the reduction of the performance of detection, starting from the values of the bit error rate BER = 0.1–0.3 at the normalized frequency spacing α = 0.3–0.4. In addition, it is determined that the decision feedback depth is effective in value of not more than 4.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banelli, P., Buzzi, S., Colavolpe, G., Modenini, A., Rusek, F., Ugolini, A.: Modulation formats and waveforms for 5G networks: who will be the heir of OFDM?: an overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Process. Mag. 31(6), 80–93 2014. https://doi.org/10.1109/MSP.2014.2337391
Gorbunov, S., Rashich, A.: BER performance of SEFDM signals in lte fading channels. In: 2018 41st International Conference on Telecommunications and Signal Processing (TSP), pp. 1–4 (2018). https://doi.org/10.1109/TSP.2018.8441462
Gelgor, A., Gorlov, A., Nguyen, V.P.: Performance analysis of SEFDM with optimal subcarriers spectrum shapes. In: 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–5 (2017). https://doi.org/10.1109/BlackSeaCom.2017.8277680
Darwazeh, I., Ghannam, H., Xu, T.: The first 15 years of SEFDM: a brief survey. In: 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, pp. 1–7 (2018). https://doi.org/10.1109/CSNDSP.2018.8471886
Kanaras, I., Chorti, A., Rodrigues, M., Darwazeh, I.: Spectrally efficient FDM signals: bandwidth gain at the expense of receiver complexity. In: Proceedings of the IEEE International Conference on Communications, ICC 2009, June 2009
Yin, Z., Jia, M., Lyu, F., Wang, W., Guo, Q., Shen, X.: Spectral efficiency analysis of SEFDM systems with ICI mitigation. In: 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pp. 1–5 (2019). https://doi.org/10.1109/VTCFall.2019.8891303
Ghannam, H., Darwazeh, I.: SEFDM: spectral efficiency upper bound and interference distribution. In: 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), pp. 1–6 (2018). https://doi.org/10.1109/CSNDSP.2018.8471782
Isam, S., Darwazeh, I.: Characterizing the intercarrier interference of non-orthogonal spectrally efficient FDM system. In: 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), pp. 1–5 (2012). https://doi.org/10.1109/CSNDSP.2012.6292762
Kanaras, I., Chorti, A., Rodrigues, M., Darwazeh, I.: Spectrally efficient FDM signals: bandwidth gain at the expense of receiver complexity. In: IEEE International Conference on Communications, pp. 1–6 (2009)
Guo, M.: Simplified maximum likelihood detection for FTN non-orthogonal FDM system. IEEE Photon. Technol. Lett. 29(19), 1687–1690 (2017). https://doi.org/10.1109/LPT.2017.2743244
Lee, W., Hill, F.: A maximum-likelihood sequence estimator with decision-feedback equalization. IEEE Trans. Commun. 25(9), 971–979 (1977). https://doi.org/10.1109/TCOM.1977.1093930
Kanaras, I., Chorti, A., Rodrigues, M., Darwazeh, I.: A combined MMSE-ML detection for spectrally efficient non orthogonal FDM signal. In: Proceedings of IEEE Broadnet Conference, September 2008
Kanaras, I., Chorti, A., Rodrigues, M., Darwazeh, I.: A new quasi-optimal detection algorithm for a non orthogonal spectrally efficient FDM. In: International Symposium on Communication and Information Technologies, pp. 460–465, September 2009
Rashich, A., Kislitsyn, A., Fadeev, D., Nguyen, T.N.: FFT-based trellis receiver for SEFDM signals. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2016)
Zavjalov, S.V., Makarov, S.B., Volvenko, S.V.: Nonlinear coherent detection algorithms of nonorthogonal multifrequency signals. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 703–713. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10353-2_66
Haeb, R., Meyr, H.: A systematic approach to carrier recovery and detection of digitally phase modulated signals of fading channels. IEEE Trans. Commun. 37(7), 748–754 (1989). https://doi.org/10.1109/26.31167
Acknowledgments
The results of the work were obtained with the support of the scholarship of the President of the Russian Federation to young scientists and graduate students carrying out promising research and development in priority areas of modernization of the Russian economy for 2021–2023 (CП-1671.2021.3).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Makarov, S.B., Nguyen, D.C., Zavjalov, S.V., Ovsyannikova, A.S., Nguyen, C.M. (2022). The Effect of Error Burst When Using a Decision Feedback Algorithm for Receiving Non-orthogonal Multi-frequency Signals. In: Koucheryavy, Y., Balandin, S., Andreev, S. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2021 2021. Lecture Notes in Computer Science(), vol 13158. Springer, Cham. https://doi.org/10.1007/978-3-030-97777-1_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-97777-1_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97776-4
Online ISBN: 978-3-030-97777-1
eBook Packages: Computer ScienceComputer Science (R0)