Abstract
In this paper, the radio resource allocation problem of two 5G traffics: Ultra-Reliable Low Latency Communications (URLLC) and enhanced Mobile BroadBand (eMBB) is studied. While eMBB traffic demands high data rates, URLLC traffic requires low latency and high reliability. To solve the formulated problem, an algorithm based on a heuristic approach is proposed. This enables the maximisation of the number of eMBB traffics admitted to the system with guaranteed data rates, while ensuring the allocation of power and bandwidth for all URLCC traffics with guaranteed latency and reliability requirements. The results of the simulation tests confirm that the proposed approach meets the URLLC reliability requirements while maintaining the eMBB data rates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
5G PPP Architecture Working Group, View on 5G Architecture, Version 1.0, July 2016. https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-5G-Architecture-WP-July-2016.pdf
Hossain, E., Hasan, M.: 5G Cellular: Key Enabling Technologies and Research Challenges, CoRR. https://arxiv.org/ftp/arxiv/papers/1503/1503.00674.pdf (2015). https://doi.org/10.1109/MIM.2015.7108393
Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: ACM Digital Library, Proceedings of the MCC 2012, pp. 13–16 (2012). https://doi.org/10.1145/2342509.2342513
ITU, Framework and Overall Objectiveness of the Development of IMT for 2020 and Beyond, Document ITU-R M.2083.0 International Telecommunication Union (ITU) (2015)
Dahlman, E., et al.: 5G wireless access: requirements and realization. IEEE Comm. Mag. 52(12), 42–47 (2014). https://doi.org/10.1109/MCOM.2014.6979985
Zhang, L., Ijaz, A., Xiao, P., Tafazolli, R.: Multi-service system: an enabler of flexible 5G air interface. IEEE Commun. Mag. 55(10), 152–159 (2017). https://doi.org/10.1109/MCOM.2017.1600916
Pedersen, K., Pocovi, G., Steiner, J., Maeder, A.: Agile 5G scheduler for improved E2E performance and flexibility for different network implementations. IEEE Commun. Mag. 56(3), 210–217 (2018). https://doi.org/10.1109/MCOM.2017.1700517
Anand, A., de Veciana, G., Shakkottai, S.: Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless Networks, pp. 112 (2017). http://arxiv.org/abs/1712.05344
Pedersen, K.I., Pocovi, G., Steiner, J., Khosravirad, S.R.: Punctured scheduling for critical low latency data on a shared channel with mobile broadband. In: IEEE Vehicular Technology Conference, vol. 2, pp. 16, (2018) https://doi.org/10.1109/VTCFall.2017.8287951
Li, C., Jiang, J., Chen, W., Ji, T., Smee, J.: 5G ultra-reliable and low-latency systems design. In: 2017 Proceedings of the of 2017 European Conference on Networks and Communications (EuCNC), Oulu, pp. 1–5 (2017). https://doi.org/10.1109/EuCNC.2017.7980747
Bairagi, A.K., Munir, M.S., Alsenwi, M., Tran, N.H.: A matching based coexistence mechanism between eMBB and uRLLC in 5G wireless networks. In: SAC 2019: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, April 2019, pp. 2377–2384 (2019). https://doi.org/10.1145/3297280.3297513
3GPP TSG RAN WG, Technical report (2020). https://www.3gpp.org/specifications-groups/ran-plenary
Luenberger, D.G., Ye, Y.: Primal–dual methods. In: Linear and Nonlinear Programming. ISORMS, vol. 228, pp. 525–558. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85450-8_15
Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over sliding windows. SIAM J. Comput. 31(6), 1794–1813 (2002). https://doi.org/10.1137/S0097539701398363
Kushner, H.J., Whiting, P.A.: Convergence of proportional-fair sharing algorithms under general conditions. IEEE Trans. Wirel. Commun. 3(4), 1250–1259 (2004). https://doi.org/10.1109/TWC.2004.830826
Bu, T., Li, L., Ramjee, R.: Generalized proportional fair scheduling in third generation wireless data networks. In: Proceedings of the IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications, pp. 1–12 (2006). https://doi.org/10.1109/INFOCOM.2006.145
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Martyna, J. (2022). Heuristic Design Algorithm for Scheduling of URLLC and eMBB Traffics in 5G Cellular Networks. In: Koucheryavy, Y., Balandin, S., Andreev, S. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2021 2021. Lecture Notes in Computer Science(), vol 13158. Springer, Cham. https://doi.org/10.1007/978-3-030-97777-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-97777-1_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97776-4
Online ISBN: 978-3-030-97777-1
eBook Packages: Computer ScienceComputer Science (R0)