Skip to main content

Computationally Efficient Look-up-Tables for Behavioral Modelling and Digital Pre-distortion of Multi-standard Wireless Systems

  • Conference paper
  • First Online:
Cognitive Radio Oriented Wireless Networks and Wireless Internet (CROWNCOM 2021, WiCON 2021)

Abstract

Wireless systems such as cellular networks have begun to see proposals for increased operational flexibility through reuse of the same hardware but with different signal standards. This paper presents an approach to characterise a power amplifier (PA) for multiple signal standards. Following from this, behavioural modeling demonstrates that the same coefficients trained for a single signal standard can be effectively applied to multiple signal standards. This result is used to design and implement a digital predistorter (DPD) capable of linearizing for different signal standards on a Field Programmable Gate Array (FPGA). This implementation is experimentally validated on a state-of-the-art RFSoC FPGA from Xilinx to correct for PA non-linearities in the transmit chain using an efficient hardware design. Additionally the behavioural modelling and DPD solutions have been validated using distinctly different PAs to demonstrate the proposed look up table approach is hardware agnostic and works when the appropriate dimensions are set for the dynamic nonlinear structure in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afsardoost, S., Eriksson, T., Fager, C.: Digital predistortion using a vector-switched model. IEEE Trans. Microw. Theory Tech. 60(4), 1166–1174 (2012). https://doi.org/10.1109/TMTT.2012.2184295. Conference Name: IEEE Transactions on Microwave Theory and Techniques

  2. Cai, J., Yu, C., Sun, L., Chen, S., King, J.B.: Dynamic behavioral modeling of RF power amplifier based on time-delay support vector regression. IEEE Trans. Microw. Theory Tech. 67(2), 533–543 (2019). https://doi.org/10.1109/TMTT.2018.2884414

    Article  Google Scholar 

  3. Campo, P.P., et al.: Gradient-adaptive spline-interpolated LUT methods for low-complexity digital predistortion. IEEE Trans. Circ. Syst. I Regular Papers 68(1), 336–349 (2021). https://doi.org/10.1109/TCSI.2020.3034825

  4. Cavers, J.K.: Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements. IEEE Trans. Veh. Technol. 39(4), 374–382 (1990). https://doi.org/10.1109/25.61359

    Article  Google Scholar 

  5. Cerasani, U., Le Moullec, Y., Tong, T.: A practical FPGA-based LUT-predistortion technology for switch-mode power amplifier linearization. In: 2009 NORCHIP (2009). https://doi.org/10.1109/NORCHP.2009.5397830

  6. Dalbah, A.I., Hammi, O., Zerguine, A.: Hybrid look-up-tables based behavioral model for dynamic nonlinear power amplifiers. IEEE Access 8, 53240–53249 (2020). https://doi.org/10.1109/ACCESS.2020.2973930

    Article  Google Scholar 

  7. Ghannouchi, F.M., Hammi, O.: Behavioral modeling and predistortion. IEEE Microwave Mag. 10(7), 52–64 (2009). https://doi.org/10.1109/MMM.2009.934516

    Article  Google Scholar 

  8. Guan, L., Zhu, A.: Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers. IEEE Trans. Microw. Theory Tech. 58(4), 866–872 (2010). https://doi.org/10.1109/TMTT.2010.2041588

    Article  Google Scholar 

  9. Hammi, O., Ghannouchi, F.M., Boumaiza, S., Vassilakis, B.: A data-based nested LUT model for RF power amplifiers exhibiting memory effects. IEEE Microwave Wirel. Compon. Lett. 17(10), 712–714 (2007). https://doi.org/10.1109/LMWC.2007.905627

    Article  Google Scholar 

  10. Hammi, O., Ghannouchi, F.M., Vassilakis, B.: 2-D vector quantized behavioral model for wireless transmitters’ nonlinearity and memory effects modeling. In: 2008 IEEE Radio and Wireless Symposium, RWS, pp. 763–766 (2008). https://doi.org/10.1109/RWS.2008.4463604

  11. Handagala, S., Mohamed, M., Xu, J., Onabajo, M., Leeser, M.: Detection of different wireless protocols on an FPGA with the same analog/RF front end. In: Moerman, I., Marquez-Barja, J., Shahid, A., Liu, W., Giannoulis, S., Jiao, X. (eds.) CROWNCOM 2018. LNICST, vol. 261, pp. 25–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05490-8_3

    Chapter  Google Scholar 

  12. Hongyo, R., Egashira, Y., Hone, T.M., Yamaguchi, K.: Deep neural network-based digital predistorter for Doherty power amplifiers. IEEE Microwave Wirel. Compon. Lett. 29(2), 146–148 (2019). https://doi.org/10.1109/LMWC.2018.2888955

    Article  Google Scholar 

  13. Li, M., Yang, Z., Zhang, Z., Li, R., Dong, Q., Nakatake, S.: Sparsity adaptive estimation of memory polynomial based models for power amplifier behavioral modeling. IEEE Microwave Wirel. Compon. Lett. 26(5), 370–372 (2016). https://doi.org/10.1109/LMWC.2016.2549024

    Article  Google Scholar 

  14. Liang, S., Jiang, Z., Qiao, L., Lu, X., Chi, N.: Faster-than-nyquist precoded CAP modulation visible light communication system based on nonlinear weighted look-up table predistortion. IEEE Photonics J. 10(1) (2018). https://doi.org/10.1109/JPHOT.2017.2788894

  15. Mathews, V.J., Sicuranza, G.L.: Polynomial Signal Processing. Wiley, New York (2000)

    Google Scholar 

  16. Milstein, L.: Wideband code division multiple access. IEEE J. Sel. Areas Commun. 18(8), 1344–1354 (2000). https://doi.org/10.1109/49.864000. http://ieeexplore.ieee.org/document/864000/

  17. Mkadem, F., Boumaiza, S.: Physically inspired neural network model for RF power amplifier behavioral modeling and digital predistortion. IEEE Trans. Microw. Theory Tech. 59(4), 913–923 (2011). https://doi.org/10.1109/TMTT.2010.2098041

    Article  Google Scholar 

  18. Mohamed, M., Handagala, S., Xu, J., Leeser, M., Onabajo, M.: Strategies and demonstration to support multiple wireless protocols with a single RF front-end. IEEE Wirel. Commun. 27(3), 88–95 (2020). https://doi.org/10.1109/MWC.001.1900224. https://ieeexplore.ieee.org/document/9108998/

  19. Molina, A., Rajamani, K., Azadet, K.: Digital predistortion using lookup tables with linear interpolation and extrapolation: direct least squares coefficient adaptation. IEEE Trans. Microw. Theory Tech. 65(3), 980–987 (2017). https://doi.org/10.1109/TMTT.2016.2627562

    Article  Google Scholar 

  20. Morgan, D.R., Ma, Z., Kim, J., Zierdt, M.G., Pastalan, J.: A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Process. 54(10), 3852–3860 (2006). https://doi.org/10.1109/TSP.2006.879264

    Article  MATH  Google Scholar 

  21. Mrabet, N., Mohammad, I., Mkadem, F., Rebai, C., Boumaiza, S.: Optimized hardware for polynomial digital predistortion system implementation. In: RWW 2012 - Proceedings: 2012 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, PAWR 2012, pp. 81–84 (2012). https://doi.org/10.1109/PAWR.2012.6174914

  22. Muhonen, K.J., Kavehrad, M., Krishnamoorthy, R.: Look-up table techniques for adaptive digital predistortion: a development and comparison. IEEE Trans. Veh. Technol. 49(5), 1995–2002 (2000). https://doi.org/10.1109/25.892601. Conference Name: IEEE Transactions on Vehicular Technology

  23. Nunes, L.C., Cabral, P.M., Pedro, J.C.: LUT based behavioral model for Doherty power amplifier design. In: Conference on Telecommunications - ConfTele, September 2015

    Google Scholar 

  24. Schreurs, D., ODroma, M., Goacher, A.A., Gadringer, M. (eds.): RF Power Amplifier Behavioral Modeling. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511619960. http://ebooks.cambridge.org/ref/id/CBO9780511619960

  25. Zhalehpour, S., Lin, J., Sepehrian, H., Shi, W., Rusch, L.: Experimental demonstration of reduced-size LUT predistortion for 256QAM SiP transmitter. In: 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA. IEEE (2019)

    Google Scholar 

Download references

Acknowledgements

This publication has emanated in part from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2077 and 18/CRT/6222. This research was also partly supported by MathWorks and by contributions from AMD/Xilinx

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Leeser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Z., Loughman, M., Jiang, Y., Mushini, R., Leeser, M., Dooley, J. (2022). Computationally Efficient Look-up-Tables for Behavioral Modelling and Digital Pre-distortion of Multi-standard Wireless Systems. In: Jin, H., Liu, C., Pathan, AS.K., Fadlullah, Z.M., Choudhury, S. (eds) Cognitive Radio Oriented Wireless Networks and Wireless Internet. CROWNCOM WiCON 2021 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-030-98002-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98002-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98001-6

  • Online ISBN: 978-3-030-98002-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics