Skip to main content

Frame Design for Adaptability in Long-Range Underwater Communication

  • Conference paper
  • First Online:
Ad Hoc Networks and Tools for IT (ADHOCNETS 2021, TridentCom 2021)

Abstract

The problem addressed in this paper is adaptable long range underwater acoustic communications. We use low frequency underwater acoustic waves that have potential for long range communications. Underwater propagation conditions can vary considerably. We define protocol elements for adaptable underwater communications. They comprise six frame formats with a wide range of robustness with respect to the underwater communication conditions. We vary the interval of symbols of 4-tone Frequency-Shift Keying modulation from one format to another. This has the effect of increasing the SNR. Hence, the ability to operate in less favorable conditions. The performance of our design is evaluated through simulation.

This work was supported by the Public Works and Government Services Canada under Contract No. W7707-216847/001/HAL through the Defence Research and Development Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, A.M., Barbeau, M., Garcia-Alfaro, J., Kassem, J., Kranakis, E.: Tuning the demodulation frequency based on a normalized trajectory model for mobile underwater acoustic communications. Trans. Emerg. Telecommun. Technol. 30(12), e3712 (2019)

    Google Scholar 

  2. Ahmad, A.M., Barbeau, M., Garcia-Alfaro, J., Kassem, J., Kranakis, E., Porretta, S.: Doppler effect in the acoustic ultra low frequency band for wireless underwater networks. Mob. Netw. Appl. 23(5), 1282–1292 (2018)

    Article  Google Scholar 

  3. Ahmad, A.-M., Barbeau, M., Garcia-Alfaro, J., Kassem, J., Kranakis, E., Porretta, S.: Doppler effect in the underwater acoustic ultra low frequency band. In: Zhou, Y., Kunz, T. (eds.) Ad Hoc Networks. LNICST, vol. 223, pp. 3–12. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74439-1_1

    Chapter  Google Scholar 

  4. Ahmad, A.-M., Barbeau, M., Garcia-Alfaro, J., Kassem, J., Kranakis, E., Porretta, S.: Low frequency mobile communications in underwater networks. In: Montavont, N., Papadopoulos, G.Z. (eds.) ADHOC-NOW 2018. LNCS, vol. 11104, pp. 239–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00247-3_22

    Chapter  Google Scholar 

  5. Ahmed, R., Stojanovic, M.: Joint power and rate control for packet coding over fading channels. IEEE J. Oceanic Eng. 42(3), 697–710 (2016)

    Article  Google Scholar 

  6. Anjangi, P., Chitre, M.: Model-based data-driven learning algorithm for tuning an underwater acoustic link. In: 2018 Fourth Underwater Communications and Networking Conference (UComms), pp. 1–5. IEEE (2018)

    Google Scholar 

  7. Antonelli, G.: Underwater Robots. Springer Tracts in Advanced Robotics, vol. 96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02877-4

    Book  Google Scholar 

  8. Barbeau, M.: Weak signal underwater communications in the ultra low frequency band. In: Proceedings of the GNU Radio Conference, vol. 2, p. 8 (2017)

    Google Scholar 

  9. Barbeau, M., Blouin, S., Traboulsi, A.: Performance of an underwater communication system in a sea trial done in the Canadian Arctic. In: 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), pp. 448–453. IEEE (2021)

    Google Scholar 

  10. Button, R.W., Kamp, J., Curtin, T.B., Dryden, J.: A survey of missions for unmanned undersea vehicles. RAND National Defense Research Institute (2009)

    Google Scholar 

  11. Decarpigny, J., Hamonic, B., Wilson, O.: The design of low frequency underwater acoustic projectors: present status and future trends. IEEE J. Oceanic Eng. 16(1), 107–122 (1991)

    Article  Google Scholar 

  12. Defence Research and Development Canada: All Domain Situational Awareness (ADSA). Goverment of Canada, November 2016. https://www.canada.ca/content/dam/drdc-rddc/documents/en/adsa-program.pdf. Accessed 05 Mar 2021

  13. Dol, H.S., Casari, P., van der Zwan, T., Otnes, R.: Software-defined underwater acoustic modems: historical review and the nilus approach. IEEE J. Oceanic Eng. 42(3), 722–737 (2017)

    Article  Google Scholar 

  14. Fano, R.: A heuristic discussion of probabilistic decoding. IEEE Trans. Inf. Theory 9(2), 64–74 (1963)

    Article  MathSciNet  Google Scholar 

  15. Freitag, L., Partan, J., Koski, P., Singh, S.: Long range acoustic communications and navigation in the arctic. In: OCEANS 2015 - MTS/IEEE Washington, pp. 1–5, October 2015

    Google Scholar 

  16. Hixson, E.: A low-frequency underwater sound source for seismic exploration. J. Acoust. Soc. Am. 126(4), 2234 (2009)

    Google Scholar 

  17. Jiang, Y.: A Practical Guide to Error-Control Coding Using Matlab. Artech House, Norwood (2010)

    MATH  Google Scholar 

  18. Kassem, J., Barbeau, M., Ahmad, A.M., Garcia-Alfaro, J.: GNU Radio blocks for long-lasting frames in mobile underwater acoustic communications. In: French GNU Radio Days, Lyon, France (2018). https://gnuradio-fr-18.sciencesconf.org/211038/document. Accessed 25 Feb 2019

  19. Kassem, J., Barbeau, M., Ahmad, A.M., Garcia-Alfaro, J.: The implementation of GNU radio blocks for decoding long-lasting frames in mobile underwater acoustic communications. In: The Technical Proceedings of the 8th Annual GNU Radio Conference, Henderson, NV (2018). https://pubs.gnuradio.org/index.php/grcon/article/view/50. Accessed 25 Feb 2019

  20. Massoud Salehi, P., Proakis, J.: Digital Communications. McGraw-Hill Education, New York (2007)

    Google Scholar 

  21. Otnes, R., Voldhaug, J.E., Haavik, S.: On communication requirements in underwater surveillance networks. In: OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, pp. 1–7. IEEE (2008)

    Google Scholar 

  22. Otnes, R., et al.: Underwater Acoustic Networking Techniques. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25224-2

    Book  Google Scholar 

  23. Proakis, J., Salehi, M.: Digital Communication, 5th edn. McGrah-Hill Higher Education, New York (2008)

    MATH  Google Scholar 

  24. Radosevic, A., Ahmed, R., Duman, T.M., Proakis, J.G., Stojanovic, M.: Adaptive OFDM modulation for underwater acoustic communications: design considerations and experimental results. IEEE J. Oceanic Eng. 39(2), 357–370 (2013)

    Article  Google Scholar 

  25. Song, A., Stojanovic, M., Chitre, M.: Editorial underwater acoustic communications: where we stand and what is next? IEEE J. Oceanic Eng. 44(1), 1–6 (2019)

    Google Scholar 

  26. Stojanovic, M.: On the relationship between capacity and distance in an underwater acoustic communication channel. SIGMOBILE Mob. Comput. Commun. Rev. 11(4), 34–43 (2007)

    Article  Google Scholar 

  27. Traboulsi, A., Barbeau, M.: Oceanus (2021). https://github.com/ahmadtraboulsi/oceanus

  28. Wan, L., et al.: Adaptive modulation and coding for underwater acoustic OFDM. IEEE J. Oceanic Eng. 40(2), 327–336 (2014)

    Article  Google Scholar 

  29. Wikipedia: Underwater locator beacon (2018). https://en.wikipedia.org/wiki/-Underwater_locator_beacon

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Barbeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbeau, M., Blouin, S., Traboulsi, A. (2022). Frame Design for Adaptability in Long-Range Underwater Communication. In: Bao, W., Yuan, X., Gao, L., Luan, T.H., Choi, D.B.J. (eds) Ad Hoc Networks and Tools for IT. ADHOCNETS TridentCom 2021 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-030-98005-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98005-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98004-7

  • Online ISBN: 978-3-030-98005-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics