Abstract
The location awareness capabilities of edge computing (EC) contains large quantity of the physical devices with short coverage range. The possibilities of the potential private data attacks from adversaries increases dramatically through easily accessible location information. The existing research on privacy-preserving schemes cannot meet various privacy-preserving expectations in practice for EC variants. In this paper, we proposed a dual scheme customizable \(\epsilon \)-differential privacy preservation to provide comprehensive protection. We establish the first scheme by clustering Edge Nodes (ENs) with SDN-enabled EC where SDN enables the capabilities of the programmability. In addition, we customize the \(\epsilon \)-differential privacy preservation scheme for variant EC services with the employment of modified Laplacian mechanism to generate noise, where the optimal tradeoff been found. The extensive experiments results demonstrate the significance of the proposed model in terms of privacy protection level and data utility, respectively.
Supported by Intelligent Technology Innovation Lab (ITIL), Victoria University.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vicfreewifi access point locations - victorian government data directory, July 2017. https://discover.data.vic.gov.au/dataset/vicfreewifi-access-point-locations
Badsha, S., et al.: Privacy preserving location-aware personalized web service recommendations. IEEE Trans. Serv. Comput. 14(3), 791–804 (2018)
Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4_7
Dang, T.D., Hoang, D.: A data protection model for fog computing. In: 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), pp. 32–38 (2017)
Deepali, Bhushan, K.: DDoS attack defense framework for cloud using fog computing. In: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 534–538 (2017)
Frey, B.J., Dueck, D.: Affinity propagation (2007)
Xia, Q., Tao, Z., Li, Q.: Privacy issues in edge computing. In: Chang, W., Wu, J. (eds.) Fog/Edge Computing For Security, Privacy, and Applications. AIS, vol. 83, pp. 147–169. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57328-7_6
Gu, B., Wang, X., Qu, Y., Jin, J., Xiang, Y., Gao, L.: Context-aware privacy preservation in a hierarchical fog computing system. In: 2019 IEEE International Conference on Communications (ICC), ICC 2019, pp. 1–6. IEEE (2019)
Gu, B.S., Gao, L., Wang, X., Qu, Y., Jin, J., Yu, S.: Privacy on the edge: customizable privacy-preserving context sharing in hierarchical edge computing. IEEE Trans. Netw. Sci. Eng. 7, 2298–2309 (2019)
Hasan, K., Ahmed, K., Biswas, K., Islam, M.S., Kayes, A.S.M., Islam, S.M.R.: Control plane optimisation for an SDN-based WBAN framework to support healthcare applications. Sensors 20(15) (2020). https://doi.org/10.3390/s20154200. https://www.mdpi.com/1424-8220/20/15/4200
Hasan, K., Ahmed, K., Biswas, K., Saiful Islam, M., Ameri Sianaki, O.: Software-defined application-specific traffic management for wireless body area networks. Future Gener. Comput. Syst. 107, 274–285 (2020). https://doi.org/10.1016/j.future.2020.01.052, https://www.sciencedirect.com/science/article/pii/S0167739X19322587
Ho, S., Qu, Y., Gu, B., Gao, L., Li, J., Xiang, Y.: DP-GAN: differentially private consecutive data publishing using generative adversarial nets. J. Netw. Comput. Appl. 185, 103066 (2021)
Kang, J., Yu, R., Huang, X., Zhang, Y.: Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Trans. Intell. Transp. Syst. 19(8), 2627–2637 (2018)
Lu, R., Heung, K., Lashkari, A.H., Ghorbani, A.A.: A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access 5, 3302–3312 (2017)
Lyu, L., Nandakumar, K., Rubinstein, B., Jin, J., Bedo, J., Palaniswami, M.: PPFA: privacy preserving fog-enabled aggregation in smart grid. IEEE Trans. Ind. Inf. 14(8), 3733–3744 (2018)
Ma, L., Liu, X., Pei, Q., Xiang, Y.: Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing. IEEE Trans. Serv. Comput. 79, 500–513 (2018). Part 2
Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 20(1), 416–464 (2018)
Nafi, N.S., Ahmed, K., Gregory, M.A., Datta, M.: Software defined neighborhood area network for smart grid applications. Future Gener. Comput. Syst. 79, 500–513 (2018). https://doi.org/10.1016/j.future.2017.09.064, https://www.sciencedirect.com/science/article/pii/S0167739X17311007
Ni, J., Zhang, K., Lin, X., Shen, X.: Securing fog computing for internet of things applications: challenges and solutions. IEEE Commun. Surv. Tutor. 20(1), 601–628 (2018)
Qu, Y., Yu, S., Gao, L., Zhou, W., Peng, S.: A hybrid privacy protection scheme in cyber-physical social networks. IEEE Trans. Comput. Soc. Syst. 5(3), 773–784 (2018)
Rasool, R.U., Ashraf, U., Ahmed, K., Wang, H., Rafique, W., Anwar, Z.: CyberPulse: a machine learning based link flooding attack mitigation system for software defined networks. IEEE Access 7, 34885–34899 (2019). https://doi.org/10.1109/ACCESS.2019.2904236
Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security issues. In: 2014 Federated Conference on Computer Science and Information Systems, pp. 1–8, September 2014. https://doi.org/10.15439/2014F503
Wang, Q., Chen, D., Zhang, N., Ding, Z., Qin, Z.: PCP: a privacy-preserving content-based publish subscribe scheme with differential privacy in fog computing. IEEE Access 5, 17962–17974 (2017). https://doi.org/10.1109/ACCESS.2017.2748956
Wang, T., Zhou, J., Chen, X., Wang, G., Liu, A., Liu, Y.: A three-layer privacy preserving cloud storage scheme based on computational intelligence in fog computing. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 3–12 (2018)
Wang, W., Zhang, Q.: Privacy preservation for context sensing on smartphone. IEEE/ACM Trans. Netw. 24(6), 3235–3247 (2016). https://doi.org/10.1109/TNET.2015.2512301
Wibowo, F.X., Gregory, M.A., Ahmed, K., Gomez, K.M.: Multi-domain software defined networking: research status and challenges. J. Netw. Comput. Appl. 87, 32–45 (2017). https://doi.org/10.1016/j.jnca.2017.03.004, https://www.sciencedirect.com/science/article/pii/S1084804517300991
Yannuzzi, M., Milito, R., Serral-Graci, R., Montero, D., Nemirovsky, M.: Key ingredients in an IoT recipe: fog computing, cloud computing, and more fog computing. In: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 325–329 (2014)
Zhang, J., Feng, X., Liu, Z.: A grid-based clustering algorithm via load analysis for industrial internet of things. IEEE Access 6, 13117–13128 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Gu, B., Qu, Y., Ahmed, K., Ye, W., Tan, C., Miao, Y. (2022). Dual Scheme Privacy-Preserving Approach for Location-Aware Application in Edge Computing. In: Bao, W., Yuan, X., Gao, L., Luan, T.H., Choi, D.B.J. (eds) Ad Hoc Networks and Tools for IT. ADHOCNETS TridentCom 2021 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-030-98005-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-98005-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98004-7
Online ISBN: 978-3-030-98005-4
eBook Packages: Computer ScienceComputer Science (R0)