Skip to main content

PET/CT Head and Neck Tumor Segmentation and Progression Free Survival Prediction Using Deep and Machine Learning Techniques

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation and Outcome Prediction (HECKTOR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13209))

Included in the following conference series:

Abstract

Three 2D CNN (Convolutional Neuronal Networks) models, one for each patient-plane (axial, sagittal and coronal) plus two 3D CNN models were ensemble using two 3D models for Head and Neck tumor segmentation in CT and FDG-PET images. A Progression Free Survival (PFS) prediction, based on a Gaussian Process Regression (GPR) model was design on Matlab. Radiomic features such as Haralick textures, geometrical and statistical data were extracted from the automatic segmentation. A 35-feature selection process was performed over 1000 different features. An anti-concordant prediction was made based on the Kaplan-Meier estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2021. LNCS, vol. 13209, pp. 1–37. Springer, Cham (2022)

    Google Scholar 

  2. Valentin, O., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. In: Medical Image Analysis (2021) (under revision)

    Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  4. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. arXiv 2016, arXiv:1606.04797

  5. Razvan, P., Tomas, M., Yoshua, B.: On the difficulty of training Recurrent Neural Networks. arXiv: 2013, arXiv:1211.5063

  6. Iglovikov, V., Shvets, A.: TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. arXiv 2018, arXiv:1801.05746

  7. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248−255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  8. Mingxing, T., Quoc, V.L.: EfficientNet: Rethinking model scaling for convolutional neural networks. In: Kamalika, C., Ruslan, S., (eds.) Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, 09–15 Jun 2019, pp. 6105–6114. PMLR, Long Beach (2019)

    Google Scholar 

  9. Alexander, B., Alex, P., Eugene, K., Vladimir, I.I., Alexandr, A.K.: Albumentations: fast and flexible image augmentations. arXiv: 2018, arXiv:1809.06839

  10. Davood, K., Septimiu, E.S.: Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks. arXiv 2019, arXiv:1904.10030

  11. Diederik, P.K., Jimmy, L.B.: Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980

  12. Çiçek, Ö., et al.: 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. https://arxiv.org/abs/1606.06650 (2016)

  13. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(04), 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184

  14. Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel "squeeze and excitation" blocks. IEEE Trans. Med. Imaging 38(2), 540–549 (2019). https://doi.org/10.1109/tmi.2018.2867261. PMID: 30716024

  15. Boundary loss for highly unbalanced segmentation. https://arxiv.org/pdf/1812.07032.pdf

  16. Hermans, J., Spanakis, G., Möckel, R.: Accumulated Gradient Normalization (2017)

    Google Scholar 

  17. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Statist. Assn. 53, 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  18. Swanson, K.R., Rostomily, R.C., Alvord, E.C., Jr.: A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br. J. Cancer 98, 113–119 (2008)

    Article  Google Scholar 

  19. Swanson, K.R., Bridge, C., Murray, J.D., Ellsworth, C., Alvord, E.C., Jr.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003)

    Article  Google Scholar 

  20. Haralick, R., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  MathSciNet  Google Scholar 

  21. Carl, P., Daniel, L.: Cooc3d (2008). https://www.mathworks.com/matlabcentral/fileexchange/19058-cooc3d. MATLAB Central File Exchange. Accessed 9 Mar 2020

  22. Lewandowski, Z., Beyenal, H.: Fundamentals of Biofilm Research. CRC Press, Florida (2007)

    Book  Google Scholar 

  23. Puttanawarut, C., Sirirutbunkajorn, N., Khachonkham, S., Pattaranutaporn, P., Wongsawat, Y.: Biological dosiomic features for the prediction of radiation pneumonitis in esophageal cancer patients. Radiat. Oncol. 16(1), 220 (2021). https://doi.org/10.1186/s13014-021-01950-y. PMID: 34775975; PMCID: PMC8591796

  24. Murakami, Y., et al.: Dose-based radiomic analysis (dosiomics) for intensity-modulated radiotherapy in patients with prostate cancer: Correlation between planned dose distribution and biochemical failure. Int. J. Radiat. Oncol. Biol. Phys. S0360–3016(21), 02627–02634 (2021). https://doi.org/10.1016/j.ijrobp.2021.07.1714. Epub ahead of print. PMID: 34706278

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Martí Asenjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez-Larraz, A., Martí Asenjo, J., Álvarez Rodríguez, B. (2022). PET/CT Head and Neck Tumor Segmentation and Progression Free Survival Prediction Using Deep and Machine Learning Techniques. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2021. Lecture Notes in Computer Science, vol 13209. Springer, Cham. https://doi.org/10.1007/978-3-030-98253-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98253-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98252-2

  • Online ISBN: 978-3-030-98253-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics