
Quasi-Monte Carlo Software

Sou-Cheng T. Choi, Fred J. Hickernell, R. Jagadeeswaran, Michael J. McCourt,
and Aleksei G. Sorokin

Abstract Practitioners wishing to experience the efficiency gains from using low
discrepancy sequences need correct, robust, well-written software. This article, based
on our MCQMC 2020 tutorial, describes some of the better quasi-Monte Carlo
(QMC) software available. We highlight the key software components required by
QMC to approximate multivariate integrals or expectations of functions of vector
random variables. We have combined these components in QMCPy, a Python open-
source library, which we hope will draw the support of the QMC community. Here
we introduce QMCPy.

Sou-Cheng T. Choi
Department of Applied Mathematics, Illinois Institute of Technology,
RE 220, 10 W. 32nd St., Chicago, IL 60616; and Kamakura Corporation, 2222 Kalakaua Ave, Suite
1400, Honolulu, HI 96815 e-mail: schoi32@iit.edu

Fred J. Hickernell
Center for Interdisciplinary Scientific Computation and
Department of Applied Mathematics, Illinois Institute of Technology
RE 220, 10 W. 32nd St., Chicago, IL 60616 e-mail: hickernell@iit.edu

R. Jagadeeswaran
Department of Applied Mathematics, Illinois Institute of Technology,
RE 220, 10 W. 32nd St., Chicago, IL 60616 e-mail: jrathin1@iit.edu; and
Wi-Tronix LLC, 631 E Boughton Rd, Suite 240, Bolingbrook, IL 60440

Michael J. McCourt
SigOpt, an Intel company,
100 Bush St., Suite 1100, San Francisco, CA 94104 e-mail: mccourt@sigopt.com

Aleksei G. Sorokin
Department of Applied Mathematics, Illinois Institute of Technology,
RE 220, 10 W. 32nd St., Chicago, IL 60616 e-mail: asorokin@hawk.iit.edu

1

ar
X

iv
:2

10
2.

07
83

3v
3

 [
cs

.M
S]

 1
4

O
ct

 2
02

1

2 S.-C. T. Choi et al.

1 Introduction

Quasi-Monte Carlo (QMC)methods promise great efficiency gains over independent
and identically distributed (IID) Monte Carlo (MC) methods. In some cases, QMC
achieves one hundredth of the error of IIDMC in the same amount of time (see Figure
6). Often, these efficiency gains are obtained simply by replacing IID sampling with
low discrepancy (LD) sampling, which is the heart of QMC.
Practitioners might wish to test whether QMCwould speed up their computation.

Access to the best QMC algorithms available would make that easier. Theoreticians
or algorithm developers might want to demonstrate their ideas on various use cases
to show their practical value.
This tutorial points to some of the best QMC software available. Then we de-

scribe QMCPy [6]1, which is crafted to be a community-owned Python library that
combines the best QMC algorithms and interesting use cases from various authors
under a common user interface.
The model problem for QMC is approximating a multivariate integral,

𝜇 :=
∫
T
𝑔(𝒕) 𝜆(𝒕) d𝒕, (1)

where 𝑔 is the integrand, and 𝜆 is a non-negative weight. If 𝜆 is a probability
distribution (PDF) for the random variable𝑻, then 𝜇 is the mean of 𝑔(𝑻). Regardless,
we perform a suitable variable transformation to interpret this integral as the mean
of a function of a multivariate, standard uniform random variable:

𝜇 = E[𝑓 (𝑿)] =
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙, 𝑿 ∼ U[0, 1]𝑑 . (2)

QMC approximates the population mean, 𝜇, by a sample mean,

𝜇 :=
1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑿𝑖), 𝑿0, 𝑿1, . . .
M∼ U[0, 1]𝑑 . (3)

The choice of the sequence {𝑿𝑖}∞𝑖=0 and the choice of 𝑛 to satisfy the prescribed
error requirement,

|𝜇 − 𝜇 | ≤ 𝜀 absolutely or with high probability, (4)

are important decisions, which QMC software helps the user make.
Here, the notation M∼ means that the sequence mimics the specified, target distri-

bution, but not necessarily in a probabilistic way. We use this notation in two forms:
IID∼ and LD∼ .
IID sequences must be random. The position of any point is not influenced by

any other, so clusters and gaps occur. A randomly chosen subsequence of an IID

1 QMCPy is in active development. This article is based on version 1.2 on PyPI.

Quasi-Monte Carlo Software 3

0 1

X IID
i1

0

1

X
II

D
i2

0 1

XLD
i1

0

1

X
L

D
i2

Fig. 1 IID points (left) contrasted with LD points (right). The LD points cover the square more
evenly.

sequence is also IID. When we say that 𝑿0, 𝑿1, . . .
IID∼ 𝐹 for some distribution 𝐹,

we mean that for any positive integer 𝑛, the multivariate probability distribution of
𝑿0, . . . , 𝑿𝑛−1 is the product of the marginals, specifically,

𝐹𝑛 (𝒙0, . . . , 𝒙𝑛−1) = 𝐹 (𝒙0) · · · 𝐹 (𝒙𝑛−1).

When IID points are used to approximate 𝜇 by the sample mean, the root mean
squared error is O(𝑛−1/2). Fig. 1 displays IID uniform points, 𝑿IID0 , 𝑿IID1 , . . .

IID∼
U[0, 1]2, i.e., the target distribution is 𝐹unif (𝒙) = 𝑥1𝑥2.
LD sequences may be deterministic or random, but each point is carefully co-

ordinated with the others so that they fill the domain well. Subsequences of LD
sequences are generally not LD. When we say that 𝑿0, 𝑿1, . . .

LD∼ U[0, 1]𝑑 , we
mean that for any positive integer 𝑛, the empirical distribution of 𝑿0, . . . , 𝑿𝑛−1,
denoted 𝐹{𝑿 𝑖 }𝑛−1𝑖=0

, approximates the uniform distribution, 𝐹unif, well (relative to 𝑛).
(The empirical distribution of a set assigns equal probability to each point.)
A measure of the difference between the empirical distribution of a set of points

and the uniform distribution is called a discrepancy and is denoted 𝐷 ({𝑿𝑖}𝑛−1𝑖=0)
[10, 17, 18, 38]. This is the origin of the term “low discrepancy” points or sequences.
LD points by definition have a smaller discrepancy than IID points. Fig. 1 contrasts
IID uniform points with LD points, 𝑿LD0 , 𝑿LD1 . . .

LD∼ U[0, 1]2, in this case, linearly
scrambled and digitally shifted Sobol’ points.
The error in using the sample mean to approximate the integral can be bounded

according to the Koksma-Hlawka inequality and its extensions [10, 17, 18, 38] as
the product of the discrepancy of the sampling sequence and the variation of the
integrand, denoted 𝑉 (·):

4 S.-C. T. Choi et al.

|𝜇 − 𝜇 | =
����∫

[0,1]𝑑
𝑓 (𝒙) d

(
𝐹unif − 𝐹{𝑿 𝑖 }𝑛−1𝑖=0

)
(𝒙)

���� ≤ 𝐷
(
{𝑿𝑖}𝑛−1𝑖=0

)
𝑉 (𝑓). (5)

The variation is a (semi-) norm of the integrand in a suitable Banach space. The
discrepancy corresponds to the norm of the error functional for that Banach space.
For typical Banach spaces, the discrepancy of LD points is O(𝑛−1+𝜖), a higher
convergence order than for IID points. For details, readers may refer to the references.
Here, we expect the reader to see in Fig. 1 that the LD points cover the integration

domain more evenly than IID points. LD sampling can be thought of as a more
even distribution of the sampling sites than IID. LD sampling is similar to stratified
sampling. In the examples below, the reader will see the demonstrably smaller
cubature errors arising from using LD points.
In the sections that follow, we first overview available QMC software. We next

describe an architecture for good QMC software, i.e., what the key components
are and how they should interact. We then describe how we have implemented
this architecture in QMCPy. Finally, we summarize further directions that we hope
QMCPy and other QMC software projects will take. Those interested in following or
contributing to the development of QMCPy are urged to visit the GitHub repository
at https://github.com/QMCSoftware/QMCSoftware.
We have endeavored to be as accurate as possible at the time of writing this article.

We hope that progress in QMC software development will make this article happily
obsolete in the coming years.

2 Available Software for QMC

QMC software spans LD sequence generators, cubatures, and applications. Here we
review the better-known software, recognizing that some software overlaps multiple
categories. Whenever applicable, we state each library’s accessibility in QMCPy, or
contrast its functionalities with QMCPy’s — where we lag behind in QMCPy, we
strive to catch up in the near future.
Software focusing on generating high-quality LD sequences and their generators

includes the following, listed in alphabetical order:

BRODA Commerical and non-commercial software developed jointly with
I.M. Sobol’ in C++, MATLAB, and Excel [28]. BRODA can generate Sobol’
sequences up to 65,536 dimensions. In comparison, QMCPy supports Sobol’
sequences up to 21,201 dimensions.

Burkhardt Various QMC software for generating van der Corput, Faure, Halton,
Hammersley, Niederreiter, or Sobol’ sequences in C, C++, Fortran, MATLAB,
or Python [4]. In QMCPy, we have implemented digital net, lattice, and Halton
generators.

LatNet Builder The successor to Lattice Builder [34], this is a C++ library with
Python and Java interfaces (in SSJ below) for generating vectors or matrices
for lattices and digital nets [9, 33]. QMCPy contains a module for parsing the

Quasi-Monte Carlo Software 5

resultant vectors or matrices from LatNet Builder for compatibility with our LD
point generators.

MATLAB Commercial software for scientific computing [51], which contains
Sobol’ and Halton sequences in the Statistics and Machine Learning Toolbox.
Both generators can be applied jointly with the Parallel Computing Toolbox
to accelerate their execution speed. The dimension of the Sobol’ sequences is
restricted to 1,111, which is relatively small, yet sufficient for most applications.

MPS Magic Point Shop contains lattices and Sobol’ sequences in C++, Python,
and MATLAB [39]. QMCPy started with MPS for developing LD generators.

Owen Owen’s randomizedHalton sequenceswith dimensions up to 1,000 [43] and
scrambled Sobol’ sequences with dimensions up to 21,021 [41, 44] in R. QMCPy
supportsOwen’sHalton randomizationmethod, andwe plan to implementOwen’s
nested uniform scrambling for digital nets in the near future.

PyTorch Open-source Python library for deep learning, with unscrambled or
scrambled Sobol’ sequences [46, 47]. PyTorch enables seamless utilization of
Graphics Processing Units (GPUs) or Field Programmable Gate Arrays (FPGAs).

QMC.jl LD Sequences in Julia [48]. Julia [3] is an interpreted language similar
to Python and R in terms of ease of use, but is designed to run much faster.

qrng Randomized Sobol’, Halton, and Korobov sequences in R [23]. The default
Halton randomization in QMCPy utilizes the methods from qrng.

SciPy Scientific computing library in Python with Latin hypercube, Halton, and
Sobol’ generators [52].

TF Quant Finance Google’s Tensorflow deep-learning library [1] specialized for
financial modeling [12]. It contains lattice and Sobol’ generators alongside with
algorithms sped up with GPUs, FGPAs, or Tensor Processing Units (TPUs).

Software focusing on QMC cubatures and applications includes the following:

GAIL The Guaranteed Automatic Integration Library contains automatic (Q)MC
stopping criteria in MATLAB [5, 14]. These are iterative procedures for one-
or high-dimensional integration that take a user’s input error tolerance(s) and
determine the number of (Q)MC sampling points necessary to achieve user-
desired accuracy (almost surely). Most of GAIL’s (Q)MC functions, some with
enhancements, are implemented in Python in QMCPy.

ML(Q)MC Multi-Level (Q)MC routines in C, C++, MATLAB, Python, and
R [11]. We have ported ML(Q)MC functions to QMCPy.

MultilevelEstimators.jl ML(Q)MC methods in Julia [49]. The author, Pieterjan
Robbe, has contributed cubature algorithms and use cases to QMCPy.

OpenTURNS Open source initiative for the Treatment of Uncertainties, Risks’N
Statistics [40] written in C++ and Python, leveraging R statistical packages, as
well as LAPACK and BLAS for numerical linear algebra.

QMC4PDE QMC for elliptic PDEs with random diffusion coefficients in
Python [30].

SSJ Stochastic Simulation with the hups package in Java [32].
UQLab Framework for Uncertainty Quantification inMATLAB [36]. The core of
UQLab is closed source, but a large portion of the library is open source. Recently,

6 S.-C. T. Choi et al.

UQ[py]Lab, the beta release of UQLab with Python bindings, is available as
Software as a Service (SaaS) via UQCloud [31].

The sections that follow describe QMCPy [6], which is our attempt to establish a
framework for QMC software and to combine the best of the above software under a
common user interface written in Python 3. The choice of language was determined
by the desire to make QMC software accessible to a broad audience, especially the
technology industry.

3 Components of QMC Software

QMC cubature can be summarized as follows. We want to approximate the expecta-
tion, 𝜇, well by the sample mean, 𝜇, where (1), (2), and (3) combine to give

𝜇 :=
∫
T
𝑔(𝒕) 𝜆(𝒕) d𝒕 = E[𝑓 (𝑿)] =

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 ≈ 1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑿𝑖) =: 𝜇,

𝑿 ∼ U[0, 1]𝑑 , 𝑿0, 𝑿1, . . . M∼ U[0, 1]𝑑 . (6)

Moreover, we want to satisfy the error requirement in (4). This requires four com-
ponents, which we implement as QMCPy classes.

Discrete Distribution produces the sequence 𝑿0, 𝑿1, . . . that mimicsU[0, 1]𝑑;
True Measure 𝒕 ↦→ 𝜆(𝒕)d𝒕 defines the original measure, e.g., Gaussian or
Lebesgue;

Integrand 𝑔 defines the original integrand, and 𝑓 defines the transformed version
to fit the DiscreteDistribution; and

Stopping Criterion determines how large 𝑛 should be to ensure that |𝜇 − 𝜇 | ≤ 𝜀
as in (4).

The software libraries referenced in Section 2 provide one or more of these
components. QMCPy combines multiple examples of all these components under
an object-oriented framework. Each example is implemented as a concrete class that
realizes the properties and methods required by the abstract class for that component.
The following sections detail descriptions and specific examples for each component.
Thorough documentation of allQMCPy classes is available in [7].Demonstrations

of how QMCPy works are given in Google Colab notebooks [15, 16]. The project
may be installed from PyPI into a Python 3 environment via the command pip
install qmcpy. In the code snippets that follow, we assume QMCPy has been
imported alongside NumPy [13] via the following commands in a Python Console:
>>> import qmcpy as qp
>>> import numpy as np

Quasi-Monte Carlo Software 7

4 Discrete Distributions

LD sequences typically mimicU[0, 1]𝑑 . Good sequences mimicking other distribu-
tions are obtained by transformations as described in the next section. We denote by
DiscreteDistribution the abstract class containing LD sequence generators. In
most cases that have been implemented, the points 𝑿0, . . . , 𝑿𝑛−1 have an empirical
(discrete) distribution that closely approximates the uniform distribution, say, in the
sense of discrepancy. We also envision future possible DiscreteDistribution
objects that assign unequal weights to the sampling points. In any case, the term
“discrete” refers to the fact that these are sequences of points (and weights), not
continuous distributions.
QMCPy implements extensible LD sequences, i.e., those that allow practitioners

to obtain and use 𝑿𝑛, 𝑿𝑛+1, . . . without discarding 𝑿0, . . . , 𝑿𝑛−1. Halton sequences
do not have preferred sample sizes 𝑛, but extensible integration lattices and digital
sequences in base 𝑏 prefer 𝑛 to be a power of 𝑏. For integration lattices and digital
sequences, we have focused on base 𝑏 = 2 since this is a popular choice and for
convenience in generating extensible sequences.
Integration lattices and digital sequences in base 2 have an elegant group structure,

which we summarize in Table 1. The addition operator is ⊕2, and its inverse is 	. The
unshifted sequence is 𝒁0, 𝒁1, . . . and the randomly shifted sequence is 𝑿0, 𝑿1, . . .

Table 1 Properties of lattices and digital net sequences. Note that they share group properties but
also have distinctives.

Define . . .
𝒁1, 𝒁2, 𝒁4, . . . ∈ [0, 1)𝑑 chosen well

𝒁 𝑖 := 𝑖0𝒁1 ⊕ 𝑖1𝒁2 ⊕ 𝑖2𝒁4 ⊕ 𝑖3𝒁8 ⊕ · · · for 𝑖 = 𝑖0 + 𝑖12 + 𝑖24 + 𝑖38 + · · · , 𝑖ℓ ∈ {0, 1}
𝑿 𝑖 := 𝒁 𝑖 ⊕ 𝚫, where 𝚫 IID∼ [0, 1)𝑑

Rank-1 Integration Lattices Digital Nets
𝒕 ⊕ 𝒙 := (𝒕 + 𝒙) mod 1 𝒕 ⊕ 𝒙 := binary digitwise addition, ⊕dig

require 𝒁2𝑚 ⊕ 𝒁2𝑚 = 𝒁 b2𝑚−1c ∀𝑚 ∈ N0
Then it follows that . . .

P𝑚 := {𝒁0, . . . , 𝒁2𝑚−1 }, 𝒁 𝑖 ⊕ 𝒁 𝑗 ∈ P𝑚

P𝚫,𝑚 := {𝑿0, . . . , 𝑿2𝑚−1 }, 𝑿 𝑖 ⊕ 𝑿 𝑗 	 𝑿 𝑘 ∈ P𝚫,𝑚

}
∀𝑖, 𝑗 , 𝑘 ∈ {0, . . . , 2𝑚 − 1}
∀𝑚 ∈ N0

We illustrate lattice and Sobol’ sequences using QMCPy. First, we create an
instance of a 𝑑 = 2 dimensional Lattice object of the DiscreteDistribution
abstract class. Thenwe generate the first eight (non-randomized) points in this lattice.

2 The operator ⊕ is commonly used to denote exclusive-or, does correspond to its meaning for
digital sequences in base 2. However, we are using it here in a more general sense.

8 S.-C. T. Choi et al.

>>> lattice = qp.Lattice(dimension=2, randomize=False)
>>> lattice.gen_samples(n=8)
"ParameterWarning:

Non-randomized lattice sequence includes the origin"
array([[0. , 0.],

[0.5 , 0.5],
[0.25 , 0.75],
[0.75 , 0.25],
[0.125, 0.375],
[0.625, 0.875],
[0.375, 0.125],
[0.875, 0.625]])

The first three generators for this lattice are 𝒁1 = (0.5, 0.5), 𝒁2 = (0.25, 0.75), and
𝒁4 = (0.125, 0.375). One can check that (𝒁2 + 𝒁4) mod 1 = (0.375, 0.125) = 𝒁6,
as Table 1 specifies.
The random shift has been turned off above to illuminate the group structure.

We normally include the randomization to ensure that there are no points on the
boundary of [0, 1]𝑑 . Then, when points are transformed to mimic distributions
such as the Gaussian, no LD points will be transformed to infinity. Turning off the
randomization generates a warning when the gen_samples method is called.
Now, we generate Sobol’ points using a similar process as we did for lattice points.

Sobol’ sequences are one of the most popular example of digital sequences.
>>> sobol = qp.Sobol(2, randomize=False)
>>> sobol.gen_samples(8, warn=False)
array([[0. , 0.],

[0.5 , 0.5],
[0.25 , 0.75],
[0.75 , 0.25],
[0.125, 0.625],
[0.625, 0.125],
[0.375, 0.375],
[0.875, 0.875]])

Here, 𝒁4 differs from that for lattices, but more importantly, addition for digital
sequences differs from that for lattices. Using digitwise addition for digital sequences,
we can confirm that according to Table 1,

𝒁2 ⊕dig 𝒁4 = (0.25, 0.75) ⊕dig (0.125, 0.625)
= (20.010, 20.110) ⊕dig (20.001, 20.101) = (20.011, 20.011)

= (0.375, 0.375) = 𝒁6.

By contrast, if we construct a digital sequence using the generators for the lattice
above with 𝒁2 = (0.25, 0.75), and 𝒁4 = (0.125, 0.375), we would obtain

𝒁6 = 𝒁2 ⊕dig 𝒁4 = (20.010, 20.110) ⊕dig (20.001, 20.011)
= (20.011, 20.101) = (0.375, 0.625),

Quasi-Monte Carlo Software 9

which differs from the 𝒁6 = (0.375, 0.125) constructed for lattices. To emphasize,
lattices and digital sequences are different, even if they share the same generators,
𝒁1, 𝒁2, 𝒁4,
The examples of qp.Lattice and qp.Sobol illustrate how QMCPy LD genera-

tors share a common user interface. The dimension is specified when the instance is
constructed, and the number of points is specified when the gen_samplesmethod is
called. Following Python practice, parameters can be input without specifying their
names if input in the prescribed order. QMCPy also includes Halton sequences and
IID sequences, again deferring details to the QMCPy documentation [7].
A crucial difference between IID generators and LD generators is reflected in

the behavior of generating 𝑛 points. For an IID generator, asking for 𝑛 points re-
peatedly gives different points each time because they are meant to be random and
independent.
>>> iid = qp.IIDStdUniform(2); iid.gen_samples(1)
array([[0.40538109, 0.12255759]])
>>> iid.gen_samples(1)
array([[0.50913741, 0.11312201]])

Your output may look different depending on the seed used to generate these random
numbers.
On the other hand, for an LD generator, asking for 𝑛 points repeatedly gives the

same points each time because they are meant to be the first 𝑛 points of a specific
LD sequence.
>>> lattice = qp.Lattice(2); lattice.gen_samples(1)
array([[0.2827584 , 0.36731649]])
>>> lattice.gen_samples(1)
array([[0.2827584 , 0.36731649]])

Here we allow the randomization so that the first point in the sequence is not the
origin. To obtain the next 𝑛 points, one may specify the start and ending indices of
the sequence.
>>> lattice.gen_samples(2)
array([[0.2827584 , 0.36731649],

[0.7827584 , 0.86731649]])
>>> lattice.gen_samples(n_min=1, n_max=2)
array([[0.7827584 , 0.86731649]])

Fig. 2 shows how increasing the number of lattice and Sobol’ LD points through
powers of two fills in the gaps in an even way.

5 True Measures

The LD sequences implemented as DiscreteDistribution objects mimic the
U[0, 1]𝑑 distribution.However,wemay need sequences tomimic other distributions.
This is implemented via variable transformations, 𝚿. In general, if 𝑿 M∼ U[0, 1]𝑑 ,
then

10 S.-C. T. Choi et al.

0 1
Xi,1

0

1

X
i,

2

n = 64

0 1
Xi,1

0

1

X
i,

2

n = 128

0 1
Xi,1

0

1

X
i,

2

n = 256

Shifted Lattice Points

0 1
Xi,1

0

1

X
i,

2

n = 64

0 1
Xi,1

0

1
X
i,

2

n = 128

0 1
Xi,1

0

1

X
i,

2

n = 256

Scrambled Sobol’ Points

Fig. 2 Randomized lattice and Sobol’ points mimicking a U[0, 1]2 measure for 𝑛 = 64, 128, and
256. Note how increasing the number of points evenly fills in the gaps between the points.

𝑻 = 𝚿(𝑿) := 𝒂 + (𝒃 − 𝒂) � 𝑿
M∼ U[𝒂, 𝒃], (7a)

𝑻 = 𝚿(𝑿) := 𝒂 + A𝚽−1 (𝑿) M∼ N(𝒂,Σ), (7b)

where 𝚽−1 (𝑿) :=
©­­«
Φ−1 (𝑋1)

...

Φ−1 (𝑋𝑑)

ª®®¬ , Σ = AA𝑇 ,

and � denotes term-by-term (Hadamard) multiplication. Here, 𝒂 and 𝒃 are assumed
to be finite, and Φ is the standard Gaussian distribution function. Again we use M∼ to
denote mimicry, not necessarily in a probabilistic sense.
Fig. 3 displays LD sequences transformed as described above to mimic a uniform

and a Gaussian distribution. The code to generate these points takes the following
form for uniform points based on a Halton sequence:
>>> u = qp.Uniform(
... sampler = qp.Halton(2),
... lower_bound = [-2, 0],
... upper_bound = [2, 4])

Quasi-Monte Carlo Software 11

−2 2
Ti1

0

4

T
i2

−6 12
Ti1

−2

6

T
i2

Fig. 3 Halton samples transformed to mimic a uniform U
([
−2
0

]
,

[
2
4

])
distribution (left) and

lattice samples transformed to mimic a Gaussian N
([
3
2

]
,

[
9 5
5 4

])
distribution (right).

>>> u.gen_samples(4)
array([[1.80379772, 3.51293599],

[-0.19620228, 0.84626932],
[0.80379772, 2.17960265],
[-1.19620228, 3.95738043]])

whereas for Gaussian points based on a lattice sequence, we have:
>>> g = qp.Gaussian(qp.Lattice(2),
... mean = [3, 2],
... covariance = [[9, 5],
... [5, 4]])
>>> g.gen_samples(4)
array([[-0.00920667, 0.29392389],

[5.02422481, 1.45408341],
[6.53688109, 5.14785917],
[2.58403124, 1.16941969]])

Here the covariance decomposition Σ = AA𝑇 is done using principal component
analysis. The Cholesky decomposition is also available.
The Brownian motion distribution arises often in financial risk applications. Here

the 𝑑 components of the variable 𝑻 correspond to the discretized Brownian motion
at times 𝜏/𝑑, 2𝜏/𝑑, . . . , 𝜏, where 𝜏 is the time horizon. The distribution is a special
case of the Gaussian with covariance

Σ = (𝜏/𝑑)
(
min(𝑗 , 𝑘)

)𝑑
𝑗,𝑘=1 (8)

and mean 𝒂, which is proportional to the times (𝜏/𝑑) (1, 2, . . . , 𝑑)𝑇 . The code for
generating a Brownian motion is
>>> bm = qp.BrownianMotion(qp.Sobol(4), drift=2)

12 S.-C. T. Choi et al.

0 τ
time = τj/d

−2

0

2
T
i,
j

0 τ
time = τj/d

−1

0

5

T
i,
j

Fig. 4 Sobol’ samples transformed to mimic a 52-dimensional Brownian Motion without drift
(left) and with drift coefficient 2 (right).

>>> bm.gen_samples(2)
array([[-0.28902829, 0.48582198, 1.81113976, 2.2376372],

[1.41552651, 1.93926124, 1.27619672, 1.47496128]])

Fig. 4 displays a Brownian motion based on Sobol’ sequence with and without a
drift.

6 Integrands

Let’s return to the integration problem in (1), which we must rewrite as (2). We
choose a transformation of variables defined as 𝒕 = 𝚿(𝒙) where 𝚿 : [0, 1]𝑑 → T .
This leads to

𝜇 =

∫
T
𝑔(𝒕) 𝜆(𝒕) d𝒕 =

∫
[0,1]𝑑

𝑔
(
𝚿(𝒙)

)
𝜆
(
𝚿(𝒙)

)
|𝚿′(𝒙) | d𝒙 =

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙,

where 𝑓 (𝒙) = 𝑔
(
𝚿(𝒙)

)
𝜆
(
𝚿(𝒙)

)
|𝚿′(𝒙) |, (9)

and |𝚿′(𝒙) | := |𝜕𝚿/𝜕𝒙 | represents the Jacobian of the variable transformation.
The abstract class Integrand provides 𝑓 based on the user’s input of 𝑔 and the
TrueMeasure instance, which defines 𝜆 and the transformation𝚿. Different choices
of 𝚿 lead to different 𝑓 , which may give different rates of convergence of the
cubature, 𝜇 to 𝜇.
We illustrate the Integrand class via an example of Keister [27]:

Quasi-Monte Carlo Software 13

𝜇 =

∫
R𝑑
cos(‖ 𝒕‖) exp(−𝒕𝑇 𝒕) d𝒕 =

∫
R𝑑
𝜋𝑑/2 cos(‖ 𝒕‖)︸ ︷︷ ︸

𝑔 (𝒕)

𝜋−𝑑/2 exp(−𝒕𝑇 𝒕)︸ ︷︷ ︸
𝜆(𝒕)

d𝒕. (10)

Since 𝜆 is the density for N(0, I/2), it is natural to choose 𝚿 according to (7b) with
A =

√︁
1/2 I, in which case 𝜆(𝚿(𝒙)) |𝚿′(𝒙) | = 1, and so

𝜇 =

∫
[0,1]𝑑

𝜋𝑑/2 cos(‖𝚿(𝒙)‖)︸ ︷︷ ︸
𝑓 (𝒙)

d𝒙, 𝚿(𝒙) :=
√︁
1/2𝚽−1 (𝒙).

The code below sets up an Integrand instance using QMCPy’s CustomFun
wrapper to tie a user-defined function 𝑔 into the QMCPy framework. Then we
evaluate the sample mean of 𝑛 = 1000 𝑓 values obtained by sampling at transformed
Halton points. Notice how a two-dimensional Halton generator is used to construct
a Gaussian true measure, which is applied alongside the my_Keister function to
instantiate a customized, QMCPy-compatible integrand for this problem.
>>> def my_Keister(t):
... d = t.shape[1] # t is an (n x d) array
... norm = np.sqrt((t**2).sum(1))
... out = np.pi**(d/2)*np.cos(norm)
... return out # size n vector
...
>>> gauss = qp.Gaussian(qp.Halton(2), covariance=1/2)
>>> keister = qp.CustomFun(true_measure=gauss, g=my_Keister)
>>> x = keister.discrete_distrib.gen_samples(1000)
>>> y = keister.f(x)
>>> y.mean()
1.809055768468628

We have no indication yet of how accurate our approximation is. That topic is treated
in the next section. Fig. 5 visualizes sampling on the original integrand, 𝑔, and
sampling on the transformed integrand, 𝑓 .
Another way to approximate the Keister integral in (10) is to write it as an integral

with respect to the Lebesgue measure:

𝜇 =

∫
R𝑑
cos(‖ 𝒕‖) exp(−𝒕𝑇 𝒕)︸ ︷︷ ︸

𝑔 (𝒕)

1︸︷︷︸
𝜆(𝒕)

d𝒕

=

∫
[0,1]𝑑

cos(‖𝚿(𝒙)‖) exp(−𝚿𝑇(𝒙)𝚿(𝒙)) |𝚿′(𝒙) |︸ ︷︷ ︸
𝑓 (𝒙)

d𝒙,

where 𝚿 is any transformation from [0, 1]𝑑 to R𝑑 . Now 𝜆 is not a PDF. QMCPy can
perform the cubature this way as well.
>>> def my_L_Keister(t):
... norm_sq = (t**2).sum(1)
... out = np.cos(np.sqrt(norm_sq))*np.exp(-norm_sq)

14 S.-C. T. Choi et al.

−2 2
T1

−2

2

T
2

g(T)

0 1
X1

0

1

X
2

f(X)

−3 −2 −1 0 1 2 3

Fig. 5 Right: Sampling the transformed Keister integrand 𝑓 at Halton points 𝑿 𝑖
LD∼ U[0, 1]2.

Left: Sampling the original Keister integrand 𝑔 at𝑻 𝑖 = 𝚿(𝑿 𝑖) M∼ N(0, I/2) where 𝚿 is defined in
(7b).

... return out

...
>>> lebesgue_gauss = qp.Lebesgue(qp.Gaussian(qp.Halton(2)))
>>> keister = qp.CustomFun(lebesgue_gauss, my_L_Keister)
>>> x = keister.discrete_distrib.gen_samples(1000)
>>> y = keister.f(x)
>>> y.mean()
1.8056340581961572

The 𝚿 chosen when transforming uniform sequences on the unit cube to fill R𝑑 is
given by (7b) with A = I.
In the examples above, onemust input the correct 𝑔 into CustomFun alongwith the

correct TrueMeasure 𝜆 to define the integration problem. The Keister integrand
included in the QMCPy library takes a more flexible approach to defining the
integration problem 𝜇 in (10). Selecting a different sampler𝚿 performs importance
sampling, which leaves 𝜇 unchanged.
>>> # default transform
>>> keister = qp.Keister(qp.Halton(2))
>>> x = keister.discrete_distrib.gen_samples(1e4)
>>> keister.f(x).mean()
1.8082377673556123
>>> # custom transform for importance sampling
>>> keister = qp.Keister(sampler=qp.Gaussian(qp.Halton(2)))
>>> x = keister.discrete_distrib.gen_samples(1e4)
>>> keister.f(x).mean()
1.8080555069060817

Quasi-Monte Carlo Software 15

In the first case above, the 𝜆 in (9) corresponds to the Gaussian density with mean
zero and variance 1/2 by default, and the corresponding variable transformation, 𝚿,
is chosen to make 𝜆

(
𝚿(𝒙)

)
|𝚿′(𝒙) | = 1 and 𝑓 (𝒙) = 𝑔 (𝚿(𝒙)). In the second case,

we choose an importance sampling density 𝜆IS, corresponding to standard Gaussian,
and the variable transformation 𝚿IS makes 𝜆IS

(
𝚿IS (𝒙)

)
|𝚿′
IS (𝒙) | = 1. Then

𝜇 =

∫
T
𝑔(𝒕) 𝜆(𝒕) d𝒕 =

∫
T
𝑔(𝒕) 𝜆(𝒕)

𝜆IS (𝒕)
𝜆IS (𝒕)d𝒕

=

∫
[0,1]𝑑

𝑔
(
𝚿IS (𝒙)

) 𝜆
(
𝚿IS (𝒙)

)
𝜆IS

(
𝚿IS (𝒙)

) 𝜆IS (𝚿IS (𝒙)) |𝚿′
IS (𝒙) | d𝒙

=

∫
[0,1]𝑑

𝑓IS (𝒙) d𝒙

where 𝑓IS (𝒙) = 𝑔
(
𝚿IS (𝒙)

) 𝜆
(
𝚿IS (𝒙)

)
𝜆IS

(
𝚿IS (𝒙)

) . (11)

Because LD samples mimic U[0, 1]𝑑 , choosing a different sampler is equivalent
to choosing a different variable transform.

7 Stopping Criteria

The StoppingCriterion object determines the number of samples 𝑛 that are
required for the sample mean approximation 𝜇 to be within error tolerance 𝜀 of the
true mean 𝜇. Several QMC stopping criteria have been implemented in QMCPy,
including replications, stopping criteria that track the decay of the Fourier complex
exponential or Walsh coefficients of the integrand [20, 21, 26], and stopping criteria
based on Bayesian credible intervals [24, 25].
The CubQMCSobolG stopping criterion used in the example below assumes the

Walsh-Fourier coefficients of the integrand are absolutely convergent. The algorithm
iteratively doubles the number of samples used in the integration and estimates the
error using the decay of the Walsh coefficients [20]. When the estimated error
is below the user-specified tolerance, it finishes the computation and returns the
estimated integral.
Let us return to the Keister example from the previous section. After setting

up a default Keister instance via a Sobol’ DiscreteDistribution, we choose
a StoppingCriterion object that matches the DiscreteDistribution and in-
put our desired tolerance. Calling the integrate method returns the approximate
integral plus some useful information about the computation.
>>> keister = qp.Keister(qp.Sobol(2))
>>> stopping = qp.CubQMCSobolG(keister, abs_tol=1e-3)
>>> solution_qmc,data_qmc = stopping.integrate()
>>> data_qmc # equivalent to print(data_qmc)
LDTransformData (AccumulateData Object)

solution 1.808

16 S.-C. T. Choi et al.

error_bound 6.06e-04
n_total 2^(13)
time_integrate 0.008

CubQMCSobolG (StoppingCriterion Object)
abs_tol 0.001
rel_tol 0
n_init 2^(10)
n_max 2^(35)

Keister (Integrand Object)
Gaussian (TrueMeasure Object)

mean 0
covariance 2^(-1)
decomp_type PCA

Sobol (DiscreteDistribution Object)
d 2^(1)
dvec [0 1]
randomize LMS_DS
graycode 0
entropy 326942311248945520670220938885737472885
spawn_key ()

The second output of the stopping criterion provides helpful diagnostic information.
This computation requires 𝑛 = 213 Sobol’ points and 0.008 seconds to complete.
The error bound is 0.000606, which falls below the absolute tolerance.
QMC, which uses LD sequences, is touted as providing substantially greater

computational efficiency compared to IID MC. Fig. 6 compares the time and sample
sizes needed to compute the 5-dimensional Keister integral (10) using IID sequences
and LD lattice sequences. Consistent with what is stated in Section 1, the error of IID
MC is O(𝑛−1/2), which means that the time and sample size to obtain an absolute
error tolerance of 𝜀 is O(𝜀−2). By contrast, the error of QMC using LD sequences
is O(𝑛−1+𝜖), which implies O(𝜀−1−𝜖) times and sample sizes. We see that QMC
methods often require orders of magnitude fewer samples than MC methods to
achieve the same error tolerance.
For another illustration of QMC cubature, we turn to pricing an Asian arithmetic

mean call option. The (continuous-time) Asian option is defined in terms of the
average of the stock price, which is written in terms of an integral. The payoff of this
option is the positive difference between the strike price, 𝐾 , averaged over the time
horizon:

payoff(𝑺) = max ©­« 12𝑑
𝑑∑︁
𝑗=1

(𝑆 𝑗−1 + 𝑆 𝑗) − 𝐾, 0
ª®¬ , 𝑺 = (𝑆0, . . . , 𝑆𝑑).

Here 𝑆 𝑗 denotes the asset price at time 𝜏 𝑗/𝑑, and a trapezoidal rule is used for discrete
approximation of the integral in time that defines the average. The trapezoidal rule
is a more accurate approximation to the integral than a rectangle rule. A basic model
for asset prices is a geometric Brownian motion,

𝑆 𝑗 (𝑻) = 𝑆0 exp((𝑟−𝜎2/2)𝜏 𝑗/𝑑+𝜎𝑇𝑗), 𝑗 = 1, . . . , 𝑑, 𝑻 = (𝑇1, . . . , 𝑇𝑑) ∼ N (0,Σ),

Quasi-Monte Carlo Software 17

10−2 10−1

Tolerance, ε

10−3

10−2

10−1

100

101

102

103

T
im

e
(s

)

O(ε−1)

O(ε−2)

LD

IID

10−2 10−1

Tolerance, ε

102

103

104

105

106

107

108

n

Fig. 6 Comparison of run times and sample sizes for computing the 5-dimensional Keister integral
(10) using IID and LD lattice sequences for a variety of absolute error tolerances. The respective
stopping criteria are qp.CubMCG [19] and qp.CubQMCLatticeG [26]. The LD sequences provide
the desired answer much more efficiently.

where Σ is defined in (8), 𝑟 is the interest rate, 𝜎 is the volatility, and 𝑆0 is the initial
asset price. The fair price of the option is then the expected value of the discounted
payoff, namely,

price = 𝜇 = E[𝑔(𝑻)], where 𝑔(𝒕) = payoff
(
𝑺(𝒕)

)
exp(−𝑟𝜏).

The following code utilizes QMCPy’s Asian option Integrand object to approx-
imate the value of an Asian call option for a particular choice of the parameters.
>>> payoff = qp.AsianOption(
... qp.Sobol(52), # weekly monitoring
... start_price = 100,
... strike_price = 120,
... volatility = 0.5,
... interest_rate = 0,
... t_final = 1,
... call_put = "call")
>>> qmc_stop_crit = qp.CubQMCSobolG(payoff, abs_tol=0.001)
>>> price,data = qmc_stop_crit.integrate()
>>> print("Option price = $%.3f using %.3f seconds, %.2e samples"
... %(price, data.time_integrate, data.n_total))
Option price = $5.194 using 0.587 seconds, 1.31e+05 samples

Because this Integrand object has the built-in Brownian motion TrueMeasure,
one only need provide the LD sampler.
Out of the money option price calculations can be sped up by adding an upward

drift to the Brownian motion. The upward drift produces more in the money paths
and also reduces the variation or variance of the final integrand, 𝑓 . This is a form of
importance sampling. Using a Brownian motion without drift we get

18 S.-C. T. Choi et al.

>>> payoff = qp.AsianOption(qp.Sobol(52),
... start_price=100, strike_price=200)
>>> qmc_stopper = qp.CubQMCSobolG(payoff, abs_tol=0.001)
>>> price,data = qmc_stopper.integrate()
>>> print("Option price = $%.4f using %.3f seconds, n = %.2e"
... %(price, data.time_integrate, data.n_total))
Option price = $0.1757 using 0.583 seconds, n = 1.31e+05

Adding the upward drift gives us the answer faster:
>>> payoff = qp.AsianOption(
... sampler = qp.BrownianMotion(qp.Sobol(52), drift=1),
... start_price=100, strike_price=200)
>>> qmc_stopper = qp.CubQMCSobolG(payoff, abs_tol=0.001)
>>> price,data_drift = qmc_stopper.integrate()
>>> print("Option price = $%.4f using %.3f seconds, n = %.2e"
... %(price, data_drift.time_integrate, data_drift.n_total))
Option price = $0.1754 using 0.085 seconds, n = 1.64e+04
>>> print("Using drift required %.0f%% the time, %.0f%% the n"
... %(100*data_drift.time_integrate / data.time_integrate,
... 100*data_drift.n_total / data.n_total))
Using drift required 15% the time, 12% the n

The choice of a good drift is an art.
The improvement in time is less than that in 𝑛 because the integrand is more

expensive to compute when the drift is employed. Referring to (11), in the case of
no drift, the 𝜆 corresponds to the density for the discrete Brownian motion, and the
variable transformation 𝚿 is chosen so that 𝑓 (𝒙) = 𝑔 (𝚿(𝒙)). However, in the case
of a drift, the integrand becomes 𝑓IS (𝒙) = 𝑔

(
𝚿IS (𝒙)

)
𝜆
(
𝚿IS (𝒙)

)
/𝜆IS

(
𝚿IS (𝒙)

)
, which

requires more computation time per integrand value.

8 Under the Hood

In this section, we look at the inner workings of QMCPy and point out features we
hope will benefit the community of QMC researchers and practitioners. We also
highlight important nuances of QMC methods and how QMCPy addresses these
challenges. For details, readers should refer to the QMCPy documentation [7].

8.1 LD Sequences

LD sequences are the backbone of QMC methods. QMCPy provides generators that
combine research from across the QMC community to enable advanced features and
customization options.
Two popular LD sequences are integration lattices and digital nets which we

previously outlined in Table 1. These LD generators are comprised of two parts: the
static generating vectors 𝒁1, 𝒁2, 𝒁4, . . . ∈ [0, 1)𝑑 and the callable generator function.

Quasi-Monte Carlo Software 19

By default, QMCPy provides a number of high-quality generating vectors for users
to choose from. For instance, the default ordinary lattice vector was constructed by
Cools, Kuo, and Nuyens [8] using component-by-component search, is extensible,
has order-2 weights, and supports up to 3600 dimensions and 220 samples. However,
users who require more samples but fewer dimensions may switch to a generating
vector constructed using LatNet Builder [9, 33] to support 750 dimensions and 224
samples. Moreover, the qp.Lattice and qp.DigitalNet objects allow users to
input their own generating vectors to produce highly customized sequences. To find
such vectors, we recommend using LatNet Builder’s construction routines as the
results can be easily parsed into a QMCPy-compatible format.
Along with the selection of a generating vector, QMCPy’s low discrepancy se-

quence routines expose a number of other customization parameters. For instance,
the lattice generator extends the Magic Point Shop [39] to support either linear or
natural ordering. Digital sequences permit either standard or Gray code ordering
and may be randomized via a digital shift optionally combined with a linear scram-
bling [37]. Halton sequences may be randomized via the routines of either Owen [43]
or Hofert and Lemieux [23].

8.2 A Word of Caution When Using LD Sequences

Although QMCPy’s DiscreteDistributions have many of the same parameters
and methods, users should be careful when swapping IID sequences with LD se-
quences. While IID node-sets have no preferred sample size, LD sequences often
require special sampling ranges to ensure optimal discrepancy. As mentioned ear-
lier, base-2 digital nets and extensible integration lattices show better evenness for
sample sizes that are powers of 2. On the other hand, the preferred sample sizes
for 𝑑-dimensional Halton sequences are 𝑛 =

∏𝑑
𝑗=1 𝑝

𝑚 𝑗

𝑗
where 𝑝 𝑗 is the 𝑗 th prime

number and𝑚 𝑗 ∈ N0 for 𝑗 = 1, . . . , 𝑑. Due to the infrequency of such values, Halton
sequences are often regarded as not having a preferred sample size.
Users may also run into trouble when trying to generate too many points. Since

QMCPy’s generators construct sequences in 32-bit precision, generating greater
than 232 consecutive samples will cause the sequence to repeat. In the future, we
plan to expand our generators to support optional 64-bit precision at the cost of
greater computational overhead.
Another subtlety arises when transforming LD sequences to mimic different dis-

tributions. As mentioned earlier, unrandomized lattice and digital sequences include
the origin, making transformations such as (7b) produce infinite values.
Some popular implementations of LD sequences drop the first point, which is the

origin in the absence of randomization. The rationale is to avoid the transformation of
the origin to infinity whenmimicking a Gaussian or other distribution with an infinite
sample space. Unfortunately, dropping the first point destroys some nice properties of
the first 𝑛 = 2𝑚 points of LD sequences, which can degrade the order of convergence
for QMC cubature. A careful discussion of this matter is given by [42].

20 S.-C. T. Choi et al.

8.3 Transformations

The transformation 𝚿 connects a DiscreteDistribution and TrueMeasure.
So far, we have assumed the DiscreteDistribution mimics a U[0, 1]𝑑 dis-
tribution with PDF 𝜚(𝒙) = 1. However, it may be advantageous to utilize a
DiscreteDistribution that mimics a different distribution.
Suppose we have a DiscreteDistributionmimicking density 𝜚 supported on

X. Then using the variable transformation 𝚿,

𝜇 =

∫
T
𝑔(𝒕) 𝜆(𝒕) d𝒕 =

∫
X
𝑓 (𝒙) 𝜚(𝒙)d𝒙 for 𝑓 (𝒙) = 𝑔

(
𝚿(𝒙)

) 𝜆 (𝚿(𝒙)
)

𝜚(𝒙) |𝚿′(𝒙) |,

which generalizes (9). QMCPy also includes support for successive changes of
measures so usersmay build complex variable transformations in an intuitivemanner.
Suppose that the variable transformation is a composition of several transformations:
𝚿 = 𝚿̂𝐿 = 𝚿𝐿 ◦𝚿𝐿−1 ◦ · · · ◦𝚿1 as in (11). Here,𝚿𝑙 : X𝑙−1 → X𝑙 ,X0 = X, andX𝐿 =

T so that the transformations are compatible with the DiscreteDistribution and
TrueMeasure. Let 𝚿̂𝑙 = 𝚿𝑙 ◦ 𝚿𝑙−1 ◦ · · · ◦ 𝚿1 denote the composition of the first 𝑙
transforms and assume that 𝚿̂0 (𝒙) = 𝒙, the identity transform. Then we may write
𝜇 =

∫
X 𝑓 (𝒙) 𝜚(𝒙)d𝒙 for

𝑓 (𝒙) = 𝑔
(
𝚿̂𝐿 (𝒙)

) 𝜆 (𝚿̂𝐿 (𝒙)
)

𝜚(𝒙)

𝐿∏
𝑙=1

��𝚿′
𝑙

(
𝚿̂𝑙−1 (𝒙)

) ��.
It is often the case that 𝚿𝑙 is chosen such that 𝚿𝑙 (𝑿) is stochastically equivalent to
a random variable with density 𝜆𝑙 on sample space X𝑙 when 𝑿 is a random variable
with density 𝜚𝑙 on sample space X𝑙−1. This implies 𝜚𝑙 (𝒙) = 𝜆𝑙 (𝚿𝑙 (𝒙)) |𝚿′

𝑙
(𝒙) | so

that

𝑓 (𝒙) = 𝑔
(
𝚿̂𝐿 (𝒙)

) 𝜆 (𝚿̂𝐿 (𝒙)
)

𝜚(𝒙)

𝐿∏
𝑙=1

𝜚𝑙 (𝚿̂𝑙−1 (𝒙))
𝜆𝑙 (𝚿̂𝑙 (𝒙))

.

For an example, we return to the Keister integral (10). The following code con-
structs three Keister instances: one without importance sampling, one importance
sampled by a Gaussian distribution, and one importance sampled by the composition
of a Gaussian distribution with a Kumaraswamy distribution [29]. All Integrands
use a Sobol’ DiscreteDistribution, making 𝜚(𝒙) = 1 and X = [0, 1]𝑑 . The
TrueMeasure is N(0, I/2) making 𝜆(𝒕) = 𝜋−𝑑/2 exp(−𝒕𝑇 𝒕) and T = R𝑑 .
The table below displays the variable transformations and the measures for these

three cases. In all cases 𝜚1 (𝒙) = · · · = 𝜚𝐿 (𝒙) = 1 because the 𝚿𝑙 utilize inverse
cumulative distributions.

Quasi-Monte Carlo Software 21

Integrand 𝐿 𝜆1 𝚿1 𝜆2 𝚿2 𝑓

K 1 N(0, I/2) (7b) 𝑔(𝚿1 (·))

K_gauss 1 N(0, 3I/4) (7b) 𝑔(𝚿1 (·))
𝜆(𝚿1 (·))
𝜆1 (𝚿1 (·))

K_gauss_kuma 2 Kum 𝑭−1
Kum N(0, I) (7b) 𝑔(𝚿2 (𝚿1 (·)))𝜆(𝚿2 (𝚿1 (·)))

𝜆1 (𝚿1 (·))𝜆2 (𝚿2 (𝚿1 (·)))

Here Kum denotes the multivariate Kumaraswamy distribution with independent
marginals, and 𝑭−1

Kum denotes the element-wise inverse cumulative distribution func-
tion. The code below evaluates the Keister integral (10) for 𝑑 = 1 and error tolerance
𝜀 = 5 × 10−8. The timings for each of these different integrands are displayed.
>>> sobol = qp.Sobol(1)
>>> K = qp.Keister(sobol) # keister 0
>>> K_gauss = qp.Keister(# keister 1
... qp.Gaussian(sobol, covariance=.75))
>>> K_gauss_kuma = qp.Keister(# keister 2
... qp.Gaussian(
... qp.Kumaraswamy(sobol, a=.8, b=.8)))
>>> for i,keister in enumerate([K, K_gauss, K_gauss_kuma]):
... stopper = qp.CubQMCSobolG(keister, abs_tol=5e-8)
... sol,data = stopper.integrate()
... print("keister %d integration time = %.3f seconds"
... %(i, data.time_integrate))
keister 0 integration time = 0.815 seconds
keister 1 integration time = 0.338 seconds
keister 2 integration time = 0.040 seconds

Successful importance sampling makes the transformed integrand, 𝑓 , more flat.
The shorter cubature times correspond to flatter integrands, as illustrated in Fig. 7.
The above example uses 𝑑 = 1 to facilitate the plot in Fig. 7; however, the same
example works for arbitrary dimensions.

9 Further Work

QMCPy is ripe for growth and development in several areas. We hope that the QMC
community will join us in making this a reality.
Multi-level (quasi-)Monte Carlo (ML(Q)MC)methods make possible the compu-

tation of expectations of functionals of stochastic differential equations and partial
differential equations with random coefficients. Such use cases appear in quanti-
tative finance and geophysical applications. QMCPy’s ML(Q)MC’s capability is
rudimentary, but under active development.
We hope to add a greater variety of use cases and are engaging collaborators to

help. Sobol’ indices, partial differential equations with random coefficients, expected
improvement measures for Bayesian optimization, and multivariate probabilities are
some of those on our radar.

22 S.-C. T. Choi et al.

0 1
x

−1

3

f
(x

)

Default Keister

Gaussian IS

Gaussian-Kumaraswamy IS

Fig. 7 Keister functions with andwithout importance sampling (IS). Note that the Keister functions
using importance sampling are generally less variable and therefore easier to integrate, as evidenced
by the faster integration times.

Recently, several QMC experts have focused on developing LD generators for
Python. Well-established packages such as SciPy [50] and PyTorch [47] are have
developed QMC modules that support numerous LD sequences and related func-
tionalities. We plan to integrate the routines as optional backends for QMCPy’s
LD generators. Creating ties to these other packages will allow users to call their
preferred generators from within the QMCPy framework. Moreover, as features in
QMCPy become more common and prove their value, we will try to incorporate
them into SciPy and other popular, general-purpose packages.
We also plan to expand our library of digital net generating matrices. We wish to

incorporate interlaced digital nets, polynomial lattices, and Niederreiter sequences,
among others. By including high-quality defaults in QMCPy, we hope to make these
sequences more readily available to the public.
Our DiscreteDistrution places equal weights on each support point, 𝑿𝑖 . In

the future, we might generalize this to unequal weights.
QMCPy already includes importance sampling, but the choice of sampling distri-

bution must be chosen a priori. We would like to see an automatic, adaptive choice
following the developments of [2, 35, 45].
Control variates can be useful for QMC as well as for IID MC [22]. These should

be incorporated into QMCPy in a seamless way.
We close with an invitation. Try QMCPy. If you find bugs or missing features,

please submit an issue to https://github.com/QMCSoftware/QMCSoftware/issues.
If you wish to add your great algorithm or use case, please submit a pull request
to our GitHub repository at https://github.com/QMCSoftware/QMCSoftware/pulls.
We hope that the community will embrace QMCPy.

Quasi-Monte Carlo Software 23

Acknowledgements The authors would like to thank the organizers for a wonderful MCQMC
2020. We also thank the referees for their many helpful suggestions. This work is supported in part
by SigOpt and National Science Foundation grant DMS-1522687.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems
(2015). URL https://www.tensorflow.org/. Software available from tensorflow.org

2. Asmussen, S., Glynn, P.: Stochastic Simulation:Algorithms andAnalysis, Stochastic Modelling
and Applied Probability, vol. 57. Springer-Verlag, New York (2007). DOI 10.1007/978-0-387-
69033-9

3. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: A fast dynamic language for
technical computing. arXiv preprint arXiv:1209.5145 (2012)

4. Burkhardt, J.: Various software (2020). URL http://people.sc.fsu.edu/ jburkardt/
5. Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jiménez Rugama, Ll.A., Li,
D., Jagadeeswaran, R., Tong, X., Zhang, K., Zhang, Y., Zhou, X.: GAIL: Guar-
anteed Automatic Integration Library (versions 1.0–2.3.2). MATLAB software,
http://gailgithub.github.io/GAIL_Dev/ (2021). DOI 10.5281/zenodo.4018189

6. Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M., Sorokin, A.: QMCPy:
A quasi-Monte Carlo Python library (2020). DOI 10.5281/zenodo.3964489. URL
https://qmcsoftware.github.io/QMCSoftware/

7. Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M.J., Sorokin, A.: QMCPy docu-
mentation (2020). URL https://qmcpy.readthedocs.io/en/latest/

8. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate
integration. SIAM Journal on Scientific Computing 28(6), 2162–2188 (2006). DOI
10.1137/06065074X

9. Darmon, Y., Godin, M., L’Ecuyer, P., Jemel, A., Marion, P., Munger, D.: LatNet builder (2018).
URL https://github.com/umontreal-simul/latnetbuilder

10. Dick, J., Kuo, F., Sloan, I.H.: High dimensional integration — the Quasi-Monte Carlo way.
Acta Numer. 22, 133–288 (2013). DOI 10.1017/S0962492913000044

11. Giles, M.: Multi-level (quasi-)Monte Carlo software (2020). URL
https://people.maths.ox.ac.uk/gilesm/mlmc/

12. Google Inc.: TF Quant Finance: Tensorflow based Quant Finance Library (2021). URL
https://github.com/google/tf-quant-finance

13. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwĳk, M.H.,
Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming
with NumPy. Nature 585(7825), 357–362 (2020). DOI 10.1038/s41586-020-2649-2. URL
https://doi.org/10.1038/s41586-020-2649-2

14. Hickernell, F.J., Choi, S.C.T., Jiang, L., Jiménez Rugama, L.A.: Monte Carlo simulation,
automatic stopping criteria for. Wiley StatsRef: Statistics Reference Online pp. 1–7 (2014)

15. Hickernell, F.J., Sorokin, A.: Quasi-Monte Carlo (QMC) software in QMCPy Google Colab-
oratory notebook (2020). URL http://tinyurl.com/QMCPyTutorial

16. Hickernell, F.J., Sorokin,A.:Quasi-MonteCarlo (QMC) software inQMCPyGoogleColabora-
tory notebook for MCQMC2020 article (2020). URL https://tinyurl.com/QMCPyArticle2021

24 S.-C. T. Choi et al.

17. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comp. 67,
299–322 (1998). DOI 10.1090/S0025-5718-98-00894-1

18. Hickernell, F.J.: Goodness-of-fit statistics, discrepancies and robust designs. Statist. Probab.
Lett. 44, 73–78 (1999). DOI 10.1016/S0167-7152(98)00293-4

19. Hickernell, F.J., Jiang, L., Liu, Y., Owen, A.B.: Guaranteed conservative fixedwidth confidence
intervals via Monte Carlo sampling. In: J. Dick, F.Y. Kuo, G.W. Peters, I.H. Sloan (eds.)
Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer Proceedings in Mathematics
and Statistics, vol. 65, pp. 105–128. Springer-Verlag, Berlin (2013). DOI 10.1007/978-3-642-
41095-6

20. Hickernell, F.J., Jiménez Rugama, Ll.A.: Reliable adaptive cubature using digital sequences.
In: R. Cools, D. Nuyens (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC,
Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics, vol. 163,
pp. 367–383. Springer-Verlag, Berlin (2016). ArXiv:1410.8615 [math.NA]

21. Hickernell, F.J., Jiménez Rugama, Ll.A., Li, D.: Adaptive quasi-Monte Carlo methods for
cubature. In: J. Dick, F.Y. Kuo, H. Woźniakowski (eds.) Contemporary Computational Mathe-
matics— a celebration of the 80th birthday of Ian Sloan, pp. 597–619. Springer-Verlag (2018).
DOI 10.1007/978-3-319-72456-0

22. Hickernell, F.J., Lemieux, C., Owen, A.B.: Control variates for quasi-Monte Carlo. Statist.
Sci. 20, 1–31 (2005). DOI 10.1214/088342304000000468

23. Hofert, M., Lemieux, C.: qrng R package (2017). URL https://cran.r-
project.org/web/packages/qrng/qrng.pdf

24. Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using lattice sampling.
Stat. Comput. 29, 1215–1229 (2019). DOI 10.1007/s11222-019-09895-9

25. Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using Sobol’ sampling
(2021+). In preparation for submission for publication

26. Jiménez Rugama, Ll.A., Hickernell, F.J.: Adaptive multidimensional integration based on
rank-1 lattices. In: R. Cools, D. Nuyens (eds.) Monte Carlo and Quasi-Monte Carlo Methods:
MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics,
vol. 163, pp. 407–422. Springer-Verlag, Berlin (2016). ArXiv:1411.1966

27. Keister, B.D.: Multidimensional quadrature algorithms. Computers in Physics 10, 119–122
(1996). DOI 10.1063/1.168565

28. Kucherenko, S.: BRODA (2020). URL https://www.broda.co.uk/index.html
29. Kumaraswamy, P.: A generalized probability density function for double-bounded random
processes. Journal of Hydrology 46(1), 79–88 (1980). DOI 10.1016/0022-1694(80)90036-0

30. Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlomethods to elliptic PDEswith random
diffusion coefficients – a survey of analysis and implementation. Found. Comput. Math. 16,
1631–1696 (2016). URL https://people.cs.kuleuven.be/ dirk.nuyens/qmc4pde/

31. Lataniotis, C., Marelli, S., Sudret, B.: Uncertainty quantification in the cloud with UQCloud.
In: 4th International Conference on Uncertainty Quantification in Computational Sciences and
Engineering (UNCECOMP 2021), pp. 209–217 (2021)

32. L’Ecuyer, P.: SSJ: Stochastic Simulation in Java (2020). URL https://github.com/umontreal-
simul/ssj

33. L’Ecuyer, P., Marion, P., Godin, M., Puchhammer, F.: A tool for custom construction of QMC
and RQMC point sets. In: E. Arnaud, M. Giles, A. Keller (eds.) Monte Carlo and Quasi-Monte
Carlo Methods: MCQMC, Oxford, 2020 (2021+)

34. L’Ecuyer, P., Munger, D.: Algorithm 958: Lattice Builder: A general software tool for con-
structing rank-1 latice rules. ACM Trans. Math. Software 42, 1–30 (2016)

35. L’Ecuyer, P., Tuffin, B.: Approximate zero-variance simulation. In: Proceedings of the 40th
Conference onWinter Simulation,WSC ’08, p. 170–181.Winter SimulationConference (2008)

36. Marelli, S., Sudret, B.: UQLab: A framework for uncertainty quantification in MATLAB.
In: The 2nd International Conference on Vulnerability and Risk Analysis and Management
(ICVRAM 2014), pp. 2554–2563. ASCE Library (2014). URL https://www.uqlab.com

37. Matoušek, J.: On the 𝐿2-discrepancy for anchored boxes. J. Complexity 14, 527–556 (1998)
38. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)

Quasi-Monte Carlo Software 25

39. Nuyens, D.: Magic point shop (2017). URL https://people.cs.kuleuven.be/ dirk.nuyens/qmc-
generators/

40. OpenTURNS Developers: An open source initiative for the Treatment of Uncertainties, Risks
’N Statistics (2020). URL http://www.openturns.org

41. Owen, A.B.: Scrambling Sobol’ and Niederreiter–Xing points. Journal of Complexity 14(4),
466–489 (1998)

42. Owen, A.B.: On dropping the first Sobol’ point (2020). ArXiv:2008.08051 [math.NA]
43. Owen, A.B.: Randomized Halton sequences in R (2020). URL
http://statweb.stanford.edu/ owen/code/

44. Owen, A.B.: About the R function: rsobol (2021). URL https://statweb.stanford.edu/ owen/re-
ports/seis.pdf

45. Owen, A.B., Zhou, Y.: Safe and effective importance sampling. J. Amer. Statist. Assoc. 95,
135–143 (2000)

46. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An imperative
style, high-performance deep learning library. In: H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, R. Garnett (eds.) Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc. (2019). URL http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

47. PyTorch Developers: PyTorch (2020). URL https://pytorch.org
48. Robbe, P.: Low discrepancy sequences in Julia (2020). URL
https://github.com/PieterjanRobbe/QMC.jl

49. Robbe, P.: Multilevel Monte Carlo simulations in Julia (2021). URL
https://github.com/PieterjanRobbe/MultilevelEstimators.jl

50. SciPy Developers: SciPy Ecosystem (2018). URL www.scipy.org
51. The MathWorks, Inc.: MATLAB R2021a. Natick, MA (2020)
52. Virtanen, P.,Gommers, R.,Oliphant, T.E.,Haberland,M., Reddy, T., Cournapeau,D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman,
K.J.,Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y.,
Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0
Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods 17, 261–272 (2020). DOI 10.1038/s41592-019-0686-2

