Skip to main content

Approximate Computation for Baseband Processing

  • Chapter
  • First Online:
Approximate Computing

Abstract

With the ever-increasing requirements of wireless communications, emerging techniques are expected to be of better performance, higher throughput, and lower cost. However, the resulting baseband systems are of massiveness, more modules, more complicated algorithms, and higher complexity. In order to address this issue and balance the performance and cost, new paradigms such as approximate computation are considered. Though the existing literatures have reported possible implementation approaches of approximate computation for baseband processing modules, an overview of this area and design methodology have not been given. In this chapter, we will give the state-of-the-art research progresses of this area from a synthetic perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu W, Lombardi F, Shulte M. A retrospective and prospective view of approximate computing point of view. Proc IEEE. 2020;108(3):394–9.

    Article  Google Scholar 

  2. Liu W, Qian L, Wang C, et al. Design of approximate radix-4 booth multipliers for error-tolerant computing. IEEE Trans Comput. 2017;66(8):1435–41.

    Article  MathSciNet  Google Scholar 

  3. Liu W, Xu J, Wang D, et al. Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications. IEEE Trans Circuits Syst I Regul Pap. 2018;65(9):2856–68.

    Article  Google Scholar 

  4. Gaines BR. Stochastic computing systems. Adv Inf Syst Sci. 1969;2:37–172.

    MATH  Google Scholar 

  5. Qian W, Li X, Riedel MD, et al. An architecture for fault-tolerant computation with stochastic logic. IEEE Trans Comput. 2010;60(1):93–105.

    Article  MathSciNet  Google Scholar 

  6. Qian W, Wang C, Li P, et al. An efficient implementation of numerical integration using logical computation on stochastic bit streams. In: International conference on computer-aided design; 2012. p. 156–62.

    Google Scholar 

  7. Ren A, Li Z, Ding C, et al. SC-DCNN: highly-scalable deep convolutional neural network using stochastic computing. ACM SIGPLAN Notices. 2017;52(4):405–18.

    Article  Google Scholar 

  8. Li Z, Li J, Ren A, et al. HEIF: highly efficient stochastic computing-based inference framework for deep neural networks. IEEE Trans Comput Aided Des Integr Circuits Syst. 2018;38(8):1543–56.

    Article  Google Scholar 

  9. Ardakani A, Leduc-Primeau F, Onizawa N, et al. VLSI implementation of deep neural network using integral stochastic computing. IEEE Trans Very Large Scale Integr Syst. 2017;25(10):2688–99.

    Article  Google Scholar 

  10. Yuan B, Keshab KP. Successive cancellation decoding of polar codes using stochastic computing. In: IEEE international symposium on circuits and systems; 2015. p. 3034–43.

    Google Scholar 

  11. Liang X, Wang H, Shen Y, et al. Efficient stochastic successive cancellation list decoder for polar codes. Sci China Inf Sci. 2020;63(10):1–19.

    Article  MathSciNet  Google Scholar 

  12. Yuan B, Keshab KP. Belief propagation decoding of polar codes using stochastic computing. In: IEEE International symposium on circuits and systems; 2016. p. 157–60.

    Google Scholar 

  13. Han K, Wang J, Gross WJ, et al. Stochastic bit-wise iterative decoding of polar codes. IEEE Trans Signal Process. 2018;67(5):1138–51.

    Article  MathSciNet  Google Scholar 

  14. Chen J, Hu J, Sobelman GE. Stochastic MIMO detector based on the Markov chain Monte Carlo algorithm. IEEE Trans Signal Process. 2014;62(6):1454–63.

    Article  MathSciNet  Google Scholar 

  15. Yang J, Zhang C, Xu S, et al. Efficient stochastic detector for large-scale MIMO. In: IEEE international conference on acoustics, speech and signal processing; 2016. p. 6550–4.

    Google Scholar 

  16. Wang H, Zhang Z, You X, et al. Low-complexity Winograd convolution architecture based on stochastic computing. In: IEEE international conference on digital signal processing; 2018. p. 1–5.

    Google Scholar 

  17. Xu R, Yuan B, You X, et al. Efficient fast convolution architecture based on stochastic computing. In: IEEE international conference on wireless communications and signal processing; 2017. p. 1–6.

    Google Scholar 

  18. Li P, Lilja DJ, Qian W, et al. Computation on stochastic bit streams digital image processing case studies. IEEE Trans Very Large Scale Integr Syst. 2013;22(3):449–62.

    Article  Google Scholar 

  19. Arikan E. Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inf Theory. 2009;55(7):3051–73.

    Article  MathSciNet  Google Scholar 

  20. Tal I, Alexander V. List decoding of polar codes. IEEE Trans Inf Theory. 2015;61(5):2213–26.

    Article  MathSciNet  Google Scholar 

  21. Chen K, Niu K, Lin JR. List successive cancellation decoding of polar codes. Electron Lett. 2012;48(9):500–1.

    Article  Google Scholar 

  22. Bakulin M, Kreyndelin V, Rog A, et al. MMSE based K-best algorithm for efficient MIMO detection. In: IEEE International Congress on Ultra Modern Telecommunications and Control Systems and Workshops; 2017. p. 258–63.

    Google Scholar 

  23. Liang X, Zhang C, Xu M, et al. Efficient stochastic list successive cancellation decoder for polar codes. In: IEEE international system-on-chip conference; 2015. p. 421–6.

    Google Scholar 

  24. Liang X, Yang J, Zhang C, et al. Hardware efficient and low-latency CA-SCL decoder based on distributed sorting. In: IEEE global communications conference; 2016. p. 1–6.

    Google Scholar 

  25. Zhang C, Keshab KP. Low-latency sequential and overlapped architectures for successive cancellation polar decoder. IEEE Trans Signal Process. 2013;61(10):2429–41.

    Article  MathSciNet  Google Scholar 

  26. Aríkan E. Polar codes: a pipelined implementation. In: Proc. 4th ISBC; 2010. p. 11–4.

    Google Scholar 

  27. Xu M, Liang X, Zhang C, et al. Stochastic BP polar decoding and architecture with efficient re-randomization and directive register. In: IEEE international workshop on signal processing systems; 2016. p. 315–20.

    Google Scholar 

  28. Xu M, Liang X, Yuan B, et al. Stochastic belief propagation polar decoding with efficient re-randomization. IEEE Trans Veh Technol. 2020;69(6):6771–6.

    Article  Google Scholar 

  29. MacKay DJC, Neal RM. Near Shannon limit performance of low density parity check codes. Electron Lett. 1996;32(18):1645.

    Article  Google Scholar 

  30. Chen Y, Zhang Q, Wu D. An efficient multi-rate LDPC-CC decoder with a layered decoding algorithm for the IEEE 1901 standard. IEEE Trans Circuits Syst II Express Briefs. 2014;61(12):992–6.

    Article  Google Scholar 

  31. Bao D, Xiang B, Shen R, et al. Programmable architecture for flexi-mode QC-LDPC decoder supporting wireless LAN/MAN applications and beyond. IEEE Trans Circuits Syst I Regul Pap. 2009;57(1):125–38.

    MathSciNet  Google Scholar 

  32. Gallager R. Low-density parity-check codes. IRE Trans Inf Theory 1962;8(1):21–8.

    Article  MathSciNet  Google Scholar 

  33. Gaudet VC, Rapley AC. Iterative decoding using stochastic computation. Electron Lett. 2003;39(3):299–301.

    Article  Google Scholar 

  34. Tehrani SS, Mannor S, Gross WJ. Fully parallel stochastic LDPC decoders. IEEE Trans Signal Process. 2008;56(11):5692–703.

    Article  MathSciNet  Google Scholar 

  35. Tehrani SS, Naderi A, Kamendje GA, et al. Tracking forecast memories in stochastic decoders. In: IEEE international conference on acoustics, speech and signal processing; 2009. p. 561–4.

    Google Scholar 

  36. Tehrani SS, Naderi A, Kamendje GA, et al. Majority-based tracking forecast memories for stochastic LDPC decoding. IEEE Trans Signal Process. 2010;58(9):4883–96.

    Article  MathSciNet  Google Scholar 

  37. Chen J, Hu J, Zhou J. Hardware and energy-efficient stochastic LU decomposition scheme for MIMO receivers. IEEE Trans Very Large Scale Integr Syst. 2015;24(4):1391–401.

    Article  Google Scholar 

  38. Yang J, Song W, Zhang S, et al. Low-complexity belief propagation detection for correlated large-scale MIMO systems. J Signal Process Syst. 2018;90(4):585–99.

    Article  Google Scholar 

  39. Farhang-Boroujeny B, Zhu H, Shi Z. Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems. IEEE Trans Signal Process. 2006;54(5):1896–909.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Wuqiong Zhao and Xiaoran Jiang for their help in editing this chapter. This work was supported in part by the National Key R&D Program of China under Grant 2020YFB2205503, in part by NSFC under Grants 62122020 and 61871115, in part by the Jiangsu Provincial NSF under Grant BK20211512, in part by the Six Talent Peak Program of Jiangsu Province under Grant 2018-DZXX-001, in part by the Distinguished Perfection Professorship of Southeast University, and in part by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, C., Wang, H. (2022). Approximate Computation for Baseband Processing. In: Liu, W., Lombardi, F. (eds) Approximate Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-98347-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98347-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98346-8

  • Online ISBN: 978-3-030-98347-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics