Skip to main content

Long-Range Feature Dependencies Capturing for Low-Resolution Image Classification

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13142))

Included in the following conference series:

  • 2091 Accesses

Abstract

Recognition of images with low-resolution is extremely challenging, due to the feature smoothness caused by the loss of structural details. Specifically, after losing the structural details, low-resolution image patches with different structural properties tend to have a uniform distribution in the specific channels of deep representation space, which will introduce ambiguity for image recognition. To address this problem, this paper proposes a novel Feature Enhancement Module (FE-Module). The module first extracts similar features as the pre-trained classification networks. Then it captures features across different depths to make use of all the hierarchical features. Finally, the module explores the patches with similar structures to remedy local feature smoothness for accurate low-resolution image classification. Extensive experiment results demonstrate that the proposed method can effectively enhance the feature discrimination ability and improve recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Xiong, Z., Tian, X., Zha, Z.J., Wu, F.: Camera lens super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1652–1660 (2019)

    Google Scholar 

  2. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  5. Fu, X., Zha, Z.J., Wu, F., Ding, X., Paisley, J.: JPEG artifacts reduction via deep convolutional sparse coding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2501–2510 (2019)

    Google Scholar 

  6. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  7. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019)

  10. Huang, Y., Zha, Z.J., Fu, X., Hong, R., Li, L.: Real-world person re-identification via degradation invariance learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14084–14094 (2020)

    Google Scholar 

  11. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  12. Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1222–1230 (2017)

    Google Scholar 

  13. Li, L., Jiang, S., Zha, Z.J., Wu, Z., Huang, Q.: Partial-duplicate image retrieval via saliency-guided visual matching. IEEE Multimedia 20(3), 13–23 (2013)

    Article  Google Scholar 

  14. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3867–3876 (2019)

    Google Scholar 

  15. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  16. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  17. Min, S., Yao, H., Xie, H., Wang, C., Zha, Z.J., Zhang, Y.: Domain-aware visual bias eliminating for generalized zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12664–12673 (2020)

    Google Scholar 

  18. Noh, J., Bae, W., Lee, W., Seo, J., Kim, G.: Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9725–9734 (2019)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Son, T., Kang, J., Kim, N., Cho, S., Kwak, S.: URIE: universal image enhancement for visual recognition in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 749–765. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_43

    Chapter  Google Scholar 

  21. Tan, W., Yan, B., Bare, B.: Feature super-resolution: make machine see more clearly. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4002 (2018)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  23. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report, CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  24. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  25. Wang, Y., Cao, Y., Zha, Z.J., Zhang, J., Xiong, Z.: Deep degradation prior for low-quality image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11049–11058 (2020)

    Google Scholar 

  26. Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3217–3226 (2020)

    Google Scholar 

  27. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China under Grand 2020AAA0105702, National Natural Science Foundation of China (NSFC) under Grants U19B2038, the University Synergy Innovation Program of Anhui Province under Grants GXXT-2019-025 and the key scientific technological innovation research project by Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, S., Wang, Y., Cao, Y., Zha, ZJ. (2022). Long-Range Feature Dependencies Capturing for Low-Resolution Image Classification. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98355-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98354-3

  • Online ISBN: 978-3-030-98355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics