Abstract
General 3D reconstruction methods use voxels, surfels, or meshes to represent the 3D model of a given scene. These surface-based methods are vulnerable to the loss of boundary details, which affects the completeness of the reconstructed model. In this paper, we focus on the boundary information of the scene and propose a novel method to reconstruct 3D models by using 3D contours extracted from input image sequences. We design a robust frame-to-model contour matching algorithm to solve the problem of finding many-to-many contour correspondences between different frames, and use contour-enhanced optimization to obtain more accurate camera poses. In order to make the reconstructed model more expressive of structural information, we propose a contour fusion algorithm that considers the connections between 3D contours. Compared with other methods which use straight lines or curve segments to reconstruct the scene model, our method can generate a more complete and regular 3D contour model with topological relationship. Experiments on several public datasets demonstrate the effectiveness of our method for both modeling and pose estimation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bignoli, A., Romanoni, A., Matteucci, M., di Milano, P.: Multi-view stereo 3D edge reconstruction. In: WACV, pp. 867–875 (2018)
Canny, J.: A computational approach to edge detection. IEEE TPAMI 8(6), 679–698 (1986)
Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion: Real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. ACM TOG 36(4), 1 (2017)
Fabbri, R., Kimia, B.: 3D curve sketch: flexible curve-based stereo reconstruction and calibration. In: CVPR, pp. 1538–1545 (2010)
Grupp, M.: evo: Python package for the evaluation of odometry and SLAM (2017). https://github.com/MichaelGrupp/evo
Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: ICRA, pp. 1524–1531 (2014)
Hofer, M., Maurer, M., Bischof, H.: Improving sparse 3D models for man-made environments using line-based 3D reconstruction. In: 3DV, vol. 1, pp. 535–542 (2014)
Hofer, M., Maurer, M., Bischof, H.: Efficient 3D scene abstraction using line segments. Comput. Vis. Image Underst. 157, 167–178 (2017)
Kim, C., Kim, P., Lee, S., Kim, H.J.: Edge-based robust RGB-D visual odometry using 2D edge divergence minimization. In: IROS, pp. 1–9 (2018)
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g\(\hat{2}\)o: a general framework for graph optimization. In: ICRA, pp. 3607–3613 (2011)
Ladicky, L., Saurer, O., Jeong, S., Maninchedda, F., Pollefeys, M.: From point clouds to mesh using regression. In: ICCV, pp. 3893–3902 (2017)
Li, S., Yao, Y., Fang, T., Quan, L.: Reconstructing thin structures of manifold surfaces by integrating spatial curves. In: CVPR, pp. 2887–2896 (2018)
Liu, L., Chen, N., Ceylan, D., Theobalt, C., Wang, W., Mitra, N.: CurveFusion: reconstructing thin structures from RGB-D sequences. ACM TOG 37(6) (2018)
Liu, L., Ceylan, D., Lin, C., Wang, W., Mitra, N.J.: Image-based reconstruction of wire art. ACM TOG 36(4), 1–11 (2017)
Martin, T., Montes, J., Bazin, J.C., Popa, T.: Topology-aware reconstruction of thin tubular structures. In: ACM SIGGRAPH, vol. 12 (2014)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE TRO 33(5), 1255–1262 (2017)
Nurutdinova, I., Fitzgibbon, A.: Towards pointless structure from motion: 3D reconstruction and camera parameters from general 3D curves. In: ICCV, pp. 2363–2371 (2015)
Ramalingam, S., Antunes, M., Snow, D., Lee, G.H., Pillai, S.: Line-sweep: cross-ratio for wide-baseline matching and 3D reconstruction. In: CVPR, pp. 1238–1246 (2015)
Rao, D., Chung, S.J., Hutchinson, S.: CurveSLAM: an approach for vision-based navigation without point features. In: IROS, pp. 4198–4204 (2012)
Schenk, F., Fraundorfer, F.: RESLAM: a real-time robust edge-based SLAM system. In: ICRA, pp. 154–160 (2019)
Schöps, T., Sattler, T., Pollefeys, M.: Surfelmeshing: online surfel-based mesh reconstruction. IEEE TPAMI 42(10), 2494–2507 (2019)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: IROS, pp. 573–580 (2012)
Tabb, A.: Shape from silhouette probability maps: reconstruction of thin objects in the presence of silhouette extraction and calibration error. In: CVPR, pp. 161–168 (2013)
Takeyama, K.: 3D reconstruction of edge line by ICP-based matching with geometric constraints. In: 2020 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8 (2020)
Tarrio, J.J., Pedre, S.: Realtime edge-based visual odometry for a monocular camera. In: ICCV, pp. 702–710 (2015)
Usumezbas, A., Fabbri, R., Kimia, B.B.: From multiview image curves to 3D drawings. In: ECCV, pp. 70–87 (2016)
Wang, K., Gao, F., Shen, S.: Real-time scalable dense Surfel mapping. In: ICRA, pp. 6919–6925 (2019)
Wang, P., Liu, L., Chen, N., Chu, H.K., Theobalt, C., Wang, W.: Vid2Curve: simultaneous camera motion estimation and thin structure reconstruction from an RGB video. ACM TOG 39(4), 1–132 (2020)
Whelan, T., Salas-Moreno, R.F., Glocker, B., Davison, A.J., Leutenegger, S.: ElasticFusion: real-time dense SLAM and light source estimation. IJRR 35(14), 1697–1716 (2016)
Zhou, T., Li, J., Wang, S., Tao, R., Shen, J.: Matnet: motion-attentive transition network for zero-shot video object segmentation. IEEE TIP 29, 8326–8338 (2020)
Zhou, T., Wang, S., Zhou, Y., Yao, Y., Li, J., Shao, L.: Motion-attentive transition for zero-shot video object segmentation. In: AAAI, pp. 13066–13073 (2020)
Zhou, T., Wang, W., Qi, S., Ling, H., Shen, J.: Cascaded human-object interaction recognition. In: CVPR, pp. 4263–4272 (2020)
Zhou, Y., Li, H., Kneip, L.: Canny-VO: visual odometry with RGB-D cameras based on geometric 3D–2D edge alignment. IEEE TRO 35(1), 184–199 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, W., Di, H., Song, L. (2022). Reconstructing 3D Contour Models of General Scenes from RGB-D Sequences. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-98355-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98354-3
Online ISBN: 978-3-030-98355-0
eBook Packages: Computer ScienceComputer Science (R0)