Abstract
Currently, more and more individuals tend to publish texts and images on social media to express their views. Inevitably, social media platform has become a media for a large number of rumors. There are a few studies on multi-modal rumor detection. However, most of them simplified the fusion strategy of texts and images and ignored the rich knowledge behind images. To address the above issues, this paper proposes a Multi-Modal Model with Texts and Images (M\(^3\)TI) for rumor detection. Specifically, its Granularity-fusion Module (GM) learns the multi-modal representation of the tweet according to the relevance of images and texts instead of the simple concatenation fusion strategy, while its Knowledge-aware Module (KM) retrieves image knowledge through the advanced recognition method to complement the semantic representation of image. Experimental results on two datasets (English PHEME and Chinese WeiBo) show that our model M\(^3\)TI is more effective than several state-of-the-art baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The image knowledge consists of the entities with brief introduction and is extracted by an object recognition tool(https://ai.baidu.com/tech/imagerecognition/general).
References
Cai, Y., Cai, H., Wan, X.: Multi-modal sarcasm detection in twitter with hierarchical fusion model. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2506–2515 (2019)
Chen, W., Zhang, Y., Yeo, C.K., Lau, C.T., Lee, B.S.: Unsupervised rumor detection based on users’ behaviors using neural networks. Pattern Recogn. Lett. 105, 226–233 (2018)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Gu, Y., Yang, K., Fu, S., Chen, S., Li, X., Marsic, I.: Multimodal affective analysis using hierarchical attention strategy with word-level alignment. In: Proceedings of the Conference. Association for Computational Linguistics. Meeting, vol. 2018, p. 2225. NIH Public Access (2018)
Jin, Z., Cao, J., Guo, H., Zhang, Y., Luo, J.: Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 795–816 (2017)
Khoo, L.M.S., Chieu, H.L., Qian, Z., Jiang, J.: Interpretable rumor detection in microblogs by attending to user interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8783–8790 (2020)
Li, Q., Zhang, Q., Si, L.: Rumor detection by exploiting user credibility information, attention and multi-task learning. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1173–1179 (2019)
Lu, Y.J., Li, C.T.: GCAN: graph-aware co-attention networks for explainable fake news detection on social media. arXiv preprint arXiv:2004.11648 (2020)
Ma, J., Gao, W., Joty, S., Wong, K.F.: Sentence-level evidence embedding for claim verification with hierarchical attention networks. Association for Computational Linguistics (2019)
Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks (2016)
Ma, J., Gao, W., Wong, K.F.: Detect rumor and stance jointly by neural multi-task learning. In: Companion Proceedings of the Web Conference 2018, pp. 585–593 (2018)
Poria, S., Cambria, E., Gelbukh, A.: Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2539–2544 (2015)
Sangwan, S., Akhtar, M.S., Behera, P., Ekbal, A.: I didn’t mean what i wrote! exploring multimodality for sarcasm detection. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sujana, Y., Li, J., Kao, H.Y.: Rumor detection on twitter using multiloss hierarchical bilstm with an attenuation factor. arXiv preprint arXiv:2011.00259 (2020)
Wang, Y., et al.: Eann: event adversarial neural networks for multi-modal fake news detection. In: Proceedings of the 24th ACM Sigkdd International Conference on Knowledge Discovery & Data Mining, pp. 849–857 (2018)
Wu, L., Rao, Y., Zhao, Y., Liang, H., Nazir, A.: DTCA: decision tree-based co-attention networks for explainable claim verification. arXiv preprint arXiv:2004.13455 (2020)
Zhang, H., Fang, Q., Qian, S., Xu, C.: Multi-modal knowledge-aware event memory network for social media rumor detection. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1942–1951 (2019)
Acknowledgments
The authors would like to thank the three anonymous reviewers for their comments on this paper. This research was supported by the National Natural Science Foundation of China (Nos. 61836007 and 62006167.), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, B., Qian, Z., Li, P., Zhu, Q. (2022). Multi-modal Fusion Network for Rumor Detection with Texts and Images. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13141. Springer, Cham. https://doi.org/10.1007/978-3-030-98358-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-98358-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98357-4
Online ISBN: 978-3-030-98358-1
eBook Packages: Computer ScienceComputer Science (R0)