Skip to main content

Fall Detection Using Multimodal Data

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13141))

Included in the following conference series:

Abstract

In recent years, the occurrence of falls has increased and has had detrimental effects on older adults. Therefore, various machine learning approaches and datasets have been introduced to construct an efficient fall detection algorithm for the social community. This paper studies the fall detection problem based on a large public dataset, namely the UP-Fall Detection Dataset. This dataset was collected from a dozen of volunteers using different sensors and two cameras. We propose several techniques to obtain valuable features from these sensors and cameras and then construct suitable models for the main problem. The experimental results show that our proposed methods can bypass the state-of-the-art methods on this dataset in terms of accuracy, precision, recall, and F1-score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html.

  2. 2.

    https://sites.google.com/up.edu.mx/har-up.

References

  1. Al-Aama, T.: Falls in the elderly: spectrum and prevention. Can. Fam. Physician 57(7), 771–776 (2011)

    Google Scholar 

  2. Tinetti, M.E., Speechley, M., Ginter, S.F.: Risk factors for falls among elderly persons living in the community. New England J. Med. 319(26), 1701–1707 (1988)

    Article  Google Scholar 

  3. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 12(1), 1–24 (2013)

    Article  Google Scholar 

  4. Bagala, F., et al.: Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 7(5), e37062 (2012)

    Article  Google Scholar 

  5. Xu, T., Zhou, Y., Zhu, J.: New advances and challenges of fall detection systems: a survey. Appl. Sci. 8(3), 418 (2018)

    Article  Google Scholar 

  6. Martínez-Villaseñor, L., Ponce, H., Brieva, J., Moya-Albor, E., Núñez-Martínez, J., Peñafort-Asturiano, C.: Up-fall detection dataset: a multimodal approach. Sensors 19(9), 1988 (2019)

    Article  Google Scholar 

  7. Vallabh, P., Malekian, R., Ye, N., Bogatinoska, D.C.: Fall detection using machine learning algorithms. In: 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), vol. 2016, pp. 1–9, IEEE (2016)

    Google Scholar 

  8. Delgado-Escaño, R., Castro, F.M., Cózar, J.R., Marín-Jiménez, M.J., Guil, N., Casilari, E.: A cross-dataset deep learning-based classifier for people fall detection and identification. Comput. Methods Program. Biomed. 184, 105265 (2020)

    Article  Google Scholar 

  9. Tsai, T.-H., Hsu, C.-W.: Implementation of fall detection system based on 3d skeleton for deep learning technique. IEEE Access 7, 153 049–153 059 (2019)

    Google Scholar 

  10. Sadreazami, H., Bolic, M., Rajan, S.: Tl-fall: contactless indoor fall detection using transfer learning from a pretrained model. In: IEEE International Symposium on Medical Measurements and Applications (MeMeA), vol. 2019, pp. 1–5, IEEE (2019)

    Google Scholar 

  11. Keskes, O., Noumeir, R.: Vision-based fall detection using ST-GCN. IEEE Access 9, 28 224–28 236 (2021)

    Google Scholar 

  12. Zhao, P., Lee, C.: Assessing rear-end collision risk of cars and heavy vehicles on freeways using a surrogate safety measure. Accid. Anal. Prev. 113, 149–158 (2018)

    Article  Google Scholar 

  13. Bhattacharya, S., et al.: A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. Electronics 9(2), 219 (2020)

    Article  MathSciNet  Google Scholar 

  14. Al-Sarem, M., Saeed, F., Boulila, W., Emara, A.H., Al-Mohaimeed, M., Errais, M.: Feature selection and classification using CatBoost method for improving the performance of predicting Parkinson’s disease. In: Saeed, F., Al-Hadhrami, T., Mohammed, F., Mohammed, E. (eds.) Advances on Smart and Soft Computing. AISC, vol. 1188, pp. 189–199. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6048-4_17

    Chapter  Google Scholar 

  15. Sharma, N., Jain, V., Mishra, A.: An analysis of convolutional neural networks for image classification. Procedia Comput. Sci. 132, 377–384 (2018)

    Article  Google Scholar 

  16. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282, IEEE (1995)

    Google Scholar 

  17. Hearst, M.A.: Support vector machines. IEEE Intell. Syst. 13(4), 18–28 (1998). https://doi.org/10.1109/5254.708428

  18. Popescu, M.-C., Balas, V.E., Perescu-Popescu, L., Mastorakis, N.: Multilayer perceptron and neural networks. WSEAS Trans. Cir. Sys. 8(7), 579–588 (2009)

    Google Scholar 

  19. Silverman, B.W., Jones, M.C., Fix, E., hodges, J.L.: An important contribution to nonparametric discriminant analysis and density estimation: commentary on fix and hodges (1951). International Statistical Review/Revue Internationale de Statistique 57(3), 233–238 (1989). http://www.jstor.org/stable/1403796

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binh T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ha, T.V., Nguyen, H., Huynh, S.T., Nguyen, T.T., Nguyen, B.T. (2022). Fall Detection Using Multimodal Data. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13141. Springer, Cham. https://doi.org/10.1007/978-3-030-98358-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98358-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98357-4

  • Online ISBN: 978-3-030-98358-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics