Abstract
Group signature is a major tool in today’s cryptography. Rank based cryptography has been known for almost 30 years and recently reached the second round of the NIST competition for post-quantum primitives. In this work, we present a code-based group signature scheme in the rank metric context. The scheme follows the path presented by Ezerman et al. (ASIACRYPT’ 2015) for Hamming metric but in a rank metric context which requires some specific adaptation and generalization. The scheme used a rank metric variation of the Stern’s authentication scheme and relies solely on generic decoding problems. It also satisfies the \(\mathsf {CPA}\)-anonymity and traceability properties in the random oracle model. In general the parameters of our scheme are slightly better compared to the Hamming scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguila, C., et al.: Rank quasi cyclic (RQC) first round submission to the NIST post-quantum cryptography call, November 2017
Aguilar, C., Blazy, O., Deneuville, J.-C., Gaborit, P., Zémor, G.: Efficient encryption from random quasi-cyclic codes. IEEE Trans. Inf. Theory 64, 3927–3943 (2018)
Alamélou, Q., Blazy, O., Cauchie, S., and Gaborit, P.: A code-based group signature scheme. Presented at WCC, April 2015
Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A practical group signature scheme based on rank metric. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI 2016. LNCS, vol. 10064, pp. 258–275. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55227-9_18
Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.-P.: A new algorithm for solving the rank syndrome decoding problem. In: EEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, 17–22 June 2018, pp. 2421–2425 (2018)
Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2{^{n/20}}\): how \(1 + 1 = 0\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38
Bettaieb, S., Bidoux, L., Blazy, O., Connan, Y., Gaborit, P.: A gapless code-based hash proof system based on RQC and its applications. Cryptology Eprint https://eprint.iacr.org/2021/026
Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably secure group signature scheme from code-based assumptions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 260–285. Springer, Heidelberg (2015)
Bardet, M., et al.: Algebraic attacks for solving the rank decoding and Minrank problems without Gröbner basis (2020). https://arxiv.org/pdf/2002.08322.pdf
Debris-Alazard, T., Tillich, J.-P.: Two attacks on rank metric code-based schemes: RankSign and an identity-based-encryption scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 62–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_3
Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_6
Gaborit, P., Schrek, J., Zémor, G.: Full cryptanalysis of the Chen identification protocol. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 35–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_3
Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_20
Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_18
Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Cryptogr. 49(1–3), 289–305 (2008)
Pointcheval, D., Vaudenay, S.: On provable security for digital signature algorithms. Technical report LIENS-96-17, Laboratoire d’Informatique de Ecole Normale Superieure (1997)
Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory 42(6), 1757–1768 (1996)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Blazy, O., Gaborit, P., Mac, D.T. (2022). A Rank Metric Code-Based Group Signature Scheme. In: Wachter-Zeh, A., Bartz, H., Liva, G. (eds) Code-Based Cryptography. CBCrypto 2021. Lecture Notes in Computer Science, vol 13150. Springer, Cham. https://doi.org/10.1007/978-3-030-98365-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-98365-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98364-2
Online ISBN: 978-3-030-98365-9
eBook Packages: Computer ScienceComputer Science (R0)