Abstract
In 2019, Berger et al. introduced a code-based cryptosystem using quasi-cyclic generalized subspace subcodes of Generalized Reed-Solomon codes (GRS). In their scheme, the underlying GRS code is not secret but a transformation of codes over \({\mathbb {F}}_{2^m}\) to codes over \({\mathbb {F}}_2\) is done by choosing some arbitrary \({\mathbb {F}}_2\)-subspaces \(V_i\) of \({\mathbb {F}}_{2^m}\) and by using the natural injection \(V_i\subset {\mathbb {F}}_{2^m} \hookrightarrow {\mathbb {F}}_2^m\). In this work, we study the security of the cryptosystem with some additional assumption. In addition to the knowledge of the GRS code, we introduce a new kind of attack in which the subspaces are corrupted. We call this attack “known subspace attack” (KSA). Although this assumption is unrealistic, it allows us to better understand the security of this scheme. We are able to show that the original parameters are not secure; in practice this however does not break the original proposal. In this paper, we provide new parameters for Berger et al.’s scheme which are secure against the known subspace attack.
This work is partially funded by the National Science Foundation (NSF) Grant CNS-1906360 and by the Ripple Impact Fund/Silicon Valley Community Foundation Grant 2018-188473.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aragon, N., et al.: BIKE: bit flipping key encapsulation (2017). http://bikesuite.org/
Banegas, G., et al.: DAGS: key encapsulation using dyadic GS codes. J. Math. Cryptol. 12(4), 221–239 (2018)
Bardet, M., Faugère, J., Salvy, B.: On the complexity of the F5 Gröbner basis algorithm. J. Symb. Comput. 70, 49–70 (2015)
Barelli, É., Couvreur, A.: An efficient structural attack on NIST submission DAGS. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 93–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_4
Barreto, P.S., et al.: Cake: code-based algorithm for key encapsulation. In: O’Neill, M. (ed.) Cryptography and Coding. LNCS, vol. 10655, pp. 207–226. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-71045-7_11
Barreto, P.S.L.M., Lindner, R., Misoczki, R.: Monoidic codes in cryptography. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 179–199. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_12
Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_6
Berger, T.P., El Amrani, N.: Codes over \(\cal{L}\)(GF(2)\(^m\), GF(2)\(^m\)), MDS diffusion matrices and cryptographic applications. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E. (eds.) Codes, Cryptology, and Information Security. LNCS, vol. 9084, pp. 197–214. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-18681-8_16
Berger, T.P., Gueye, C.T., Klamti, J.B.: Generalized subspace subcodes with application in cryptology. CoRR abs/1704.07882 (2017). http://arxiv.org/abs/1704.07882
Berger, T.P., Gueye, C.T., Klamti, J.B.: A NP-complete problem in coding theory with application to code based cryptography. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS, vol. 10194, pp. 230–237. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55589-8_15
Berger, T.P., Gueye, C.T., Klamti, J.B.: Generalized subspace subcodes with application in cryptology. IEEE Trans. Inf. Theory 65(8), 4641–4657 (2019)
Berger, T.P., Gueye, C.T., Klamti, J.B., Ruatta, O.: Designing a public key cryptosystem based on quasi-cyclic subspace subcodes of Reed-Solomon codes. In: Gueye, C.T., Persichetti, E., Cayrel, P.-L., Buchmann, J. (eds.) A2C 2019. CCIS, vol. 1133, pp. 97–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36237-9_6
Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Designs Codes Crypt. 35(1), 63–79 (2005). https://doi.org/10.1007/s10623-003-6151-2
Couvreur, A., Lequesne, M.: On the security of subspace subcodes of Reed-Solomon codes for public key encryption. arXiv preprint arXiv:2009.05826 (2020)
Drăgoi, V., Richmond, T., Bucerzan, D., Legay, A.: Survey on cryptanalysis of code-based cryptography: from theoretical to physical attacks. In: 2018 7th International Conference on Computers Communications and Control (ICCCC), pp. 215–223. IEEE (2018)
Faugère, J.-C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.-P.: Structural cryptanalysis of McEliece schemes with compact keys. Designs Codes Crypt. 79(1), 87–112 (2015). https://doi.org/10.1007/s10623-015-0036-z
Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_14
Faugère, J.C., Otmani, A., Perret, L., Tillich, J.P.: Algebraic cryptanalysis of compact McEliece’s variants-toward a complexity analysis. In: Conference on Symbolic Computation and Cryptography, p. 45 (2013)
Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_41
Gabidulin, E.M.: Attacks and counter-attacks on the GPT public key cryptosystem. Designs Codes Crypt. 48(2), 171–177 (2008). https://doi.org/10.1007/s10623-007-9160-8
Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes and their application to cryptography. In: Proceedings of the Workshop on Coding and Cryptography WCC, vol. 2013 (2013)
Georgiades, J.: Some remarks on the security of the identification scheme based on permuted kernels. J. Cryptol. 5(2), 133–137 (1992). https://doi.org/10.1007/BF00193565
Horlemann-Trautmann, A.L., Marshall, K., Rosenthal, J.: Extension of overbeck’s attack for Gabidulin-based cryptosystems. Designs Codes Cryp. 86(2), 319–340 (2018). https://doi.org/10.1007/s10623-017-0343-7
Huffman, W.C., Pless, V.: Fundamentals of Error-correcting Codes. Cambridge University Press, Cambridge (2010)
Khathuria, K., Joachim Rosenthal, V.W.: Encryption scheme based on expanded Reed-Solomon codes. Adv. Math. Commun. 15(2), 207–218 (2021)
Loidreau, P.: Designing a rank metric based McEliece cryptosystem. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 142–152. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_11
McEliece, R., Van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Coding Thv 4244, 114–116 (1978)
Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24
Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: 2013 IEEE International Symposium on Information Theory, pp. 2069–2073. IEEE (2013)
Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Control Inf. Theory 15(2), 159–166 (1986)
NIST. https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
NIST: https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptol. 21(2), 280–301 (2008). https://doi.org/10.1007/s00145-007-9003-9
Persichetti, E.: Compact McEliece keys based on quasi-dyadic Srivastava codes. J. Math. Cryptol. 6(2), 149–169 (2012)
Rashwan, H., Gabidulin, E.M., Honary, B.: A smart approach for GPT cryptosystem based on rank codes. In: 2010 IEEE International Symposium on Information Theory, pp. 2463–2467. IEEE (2010)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)
Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on generalized Reed-Solomon codes (1992)
Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 61–72. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Berger, T.P. et al. (2022). Security Analysis of a Cryptosystem Based on Subspace Subcodes. In: Wachter-Zeh, A., Bartz, H., Liva, G. (eds) Code-Based Cryptography. CBCrypto 2021. Lecture Notes in Computer Science, vol 13150. Springer, Cham. https://doi.org/10.1007/978-3-030-98365-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-98365-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98364-2
Online ISBN: 978-3-030-98365-9
eBook Packages: Computer ScienceComputer Science (R0)