Skip to main content

AI-Based Syntactic Complexity Metrics and Sight Interpreting Performance

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2021)

Abstract

Complex syntax may lead to increased cognitive effort during translation. However, it is unclear what kinds of syntactic complexity have a stronger impact on translation performance. In this paper, we employ several syntactic metrics which enable us to explore the impact of syntactic complexity on the quality in English-to-Chinese sight interpreting. We have operationalized syntactic complexity by six metrics, namely, Incomplete Dependency Theory metric (IDT), Dependency Locality Theory metric (DLT), Combined IDT and DLT metric (IDT+DLT), Left Embeddedness metric (LE), Nested Nouns Distancemetric (NND), and Bilingual Complexity Ratio metric (BRC). Three professional translators have manually annotated translation errors using MQM-derived error taxonomies, which includes accuracy, fluency, and style errors, each as critical or minor errors. We assessed inter-rater agreement by adopting weighted Fleiss’ Kappa scores. We found that there are strong correlations between the IDT and IDT+DLT metrics and sight interpreting errors. We also found that language-specific syntactic differences between English and Chinese such as directions of branching and noun modifiers can have a strong influence on accuracy and critical errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://sites.google.com/site/centretranslationinnovation/tpr-db/public-studies?authuser=0.

  2. 2.

    See https://www.taus.net/academy/news/press-release/dqf-and-mqm-harmonized-to-create-an-industry-wide-quality-standard.

  3. 3.

    See https://github.com/ContentSide/lingx.

References

  1. Agrifoglio, M.: Sight translation and interpreting: a comparative analysis of constraints and failures. Interpreting 6, 43–67 (2004)

    Article  Google Scholar 

  2. Al-Jabr, A.F.: Effect of syntactic complexity on translating from/into English/Arabic. Babel 52(3), 203–221 (2006)

    Google Scholar 

  3. Baker, M., Francis, G., Tognini-Bonelli, E. (eds.): Text and Technology: In Honour of John Sinclair. John Benjamins Publishing (1993)

    Google Scholar 

  4. Blache, P.: A computational model for linguistic complexity. In: Biology, Computation and Linguistics, pp. 155–167. IOS Press (2011)

    Google Scholar 

  5. Blache, P.: Evaluating language complexity in context: new parameters for a constraint-based model. In: 6th International Workshop Constraints and Language Processing, CSLP, pp. 7–20 (2011)

    Google Scholar 

  6. Carl, M.: Translog-II: a program for recording user activity data for empirical reading and writing research. In: LREC, vol. 12, pp. 4108–4112 (2012)

    Google Scholar 

  7. Carl, M., Báez, M.C.T.: Machine translation errors and the translation process: a study across different languages. J. Specialised Transl. 31, 107–132 (2019)

    Google Scholar 

  8. Cenkova, I.: Sight Interpreting/translation. In: Routledge Encyclopedia of Interpreting Studies, pp. 374–375. Routledge, London/New York (2015)

    Google Scholar 

  9. Chen, W.: Sight translation. In: The Routledge Handbook of Interpreting, pp. 156–165. Routledge (2015)

    Google Scholar 

  10. Chmiel, A., Janikowski, P., Cieślewicz, A.: The eye or the ear?: source language interference in sight translation and simultaneous interpreting. Interpreting 22, 187–210 (2020)

    Article  Google Scholar 

  11. Dancey, C., Reidy, J.: Analysis of differences between two conditions: the t-test. In: Statistics without Maths for Psychology: Using SPSS for Windows, pp. 206–236 (2004)

    Google Scholar 

  12. Debusmann, R.: An introduction to dependency grammar. Hausarbeit fur das Hauptseminar Dependenzgrammatik SoSe 99, 1–16 (2000)

    Google Scholar 

  13. de Marneffe, M.C., Manning, C.D., Nivre, J., Zeman, D.: Universal dependencies. Comput. Linguist. 47(2), 255–308 (2021)

    Google Scholar 

  14. Fang, J.: Pause in sight translation: a pilot study. In: Zhao, J., Li, D., Tian, L. (eds.) Translation Education. NFTS, pp. 173–192. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7390-3_11

    Chapter  Google Scholar 

  15. Fleiss, J.L., Levin, B., Paik, M.C.: The measurement of interrater agreement. Stat. Methods Rates Proportions 2(212–236), 22–23 (1981)

    Google Scholar 

  16. Gibson, E.: Linguistic complexity: locality of syntactic dependencies. Cognition 68(1), 1–76 (1998)

    Article  Google Scholar 

  17. Gibson, E.: The dependency locality theory: a distance-based theory of linguistic complexity. Image Lang. Brain 2000, 95–126 (2000)

    Google Scholar 

  18. Gile, D.: Conference interpreting as a cognitive management problem. In: Applied Psychology, pp. 196–214. Sage, London (1997)

    Google Scholar 

  19. Graesser, A.C., McNamara, D.S., Kulikowich, J.M.: Coh-Metrix: providing multilevel analyses of text characteristics. In: Educational Researcher, pp. 223–234 (2011)

    Google Scholar 

  20. Guo, L.: An analysis of the word order pattern in the SI target language and its underlying reasons in the language combination of English and Chinese. Unpublished Ph.D. dissertation. Shanghai International Studies University (郭靓靓. 2011. 中英文同传译语语序处理方式的选择与原因研究. 上海外国语大学博士学位论文) (2011)

    Google Scholar 

  21. Johnson, M.E.: Proof nets and the complexity of processing center-embedded constructions. In: Retore, C. (ed.) Special Issue on Recent Advances in Logical and Algebraic Approaches’ to Grammar (1998). J. Logic Lang. Inf. 7(4), 433–447

    Google Scholar 

  22. Landis, J.R., Koch, G.G.: An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 363–374 (1977)

    Google Scholar 

  23. Lommel, A., Uszkoreit, H., Burchardt, A.: Multidimensional quality metrics (MQM): a framework for declaring and describing translation quality metrics. Tradumàtica 12, 455–463 (2014)

    Article  Google Scholar 

  24. Mikkelson, H., Willis, J., Alvarez, N.: Introduction to sight translation. In: The Interpreter’s Edge. Spreckels (1995)

    Google Scholar 

  25. Mirzapour, M., Prost, J.P., Retoré, C.: Categorical proof nets and dependency locality: a new metric for linguistic complexity. In: LACompLing: Logic and Algorithms in Computational Linguistics, pp. 73–86 (2018)

    Google Scholar 

  26. Mirzapour, M., Prost, J.-P., Retoré, C.: Measuring linguistic complexity: introducing a new categorial metric. In: Loukanova, R. (ed.) Logic and Algorithms in Computational Linguistics 2018 (LACompLing2018). SCI, vol. 860, pp. 95–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30077-7_5

    Chapter  Google Scholar 

  27. Moot, R., Retoré, C.: The Logic of Categorial Grammars: a Deductive Account of Natural Language Syntax and Semantics. Springer, Heidelberg (2012)

    Book  Google Scholar 

  28. Morrill, G.: Incremental processing and acceptability. Comput. Linguist. 26(3), 319–338 (2000)

    Article  Google Scholar 

  29. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: a Python natural language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082 (2020)

  30. Shreve, G.M., Lacruz, I., Angelone, E.: Cognitive effort, syntactic disruption, and visual interference in a sight translation task. In: Translation and Cognition, pp. 63–84. John Benjamins Publishing Company (2010)

    Google Scholar 

  31. Van Riemsdijk, H.C., Williams, E.: Introduction to the Theory of Grammar, vol. 12. MIT Press (1986)

    Google Scholar 

  32. Vanroy, B.: Syntactic difficulties in translation. Ph.D. thesis. Ghent University (2021)

    Google Scholar 

  33. Zhong, W.H., Zhan, C.: A Coursebook of Simultaneous Interpreting (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longhui Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, L., Carl, M., Mirzapour, M., Jacquenet, H., Vieira, L.N. (2022). AI-Based Syntactic Complexity Metrics and Sight Interpreting Performance. In: Kim, JH., Singh, M., Khan, J., Tiwary, U.S., Sur, M., Singh, D. (eds) Intelligent Human Computer Interaction. IHCI 2021. Lecture Notes in Computer Science, vol 13184. Springer, Cham. https://doi.org/10.1007/978-3-030-98404-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98404-5_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98403-8

  • Online ISBN: 978-3-030-98404-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics