Skip to main content

Ball Path Prediction for Humanoid Robots: Combination of k-NN Regression and Autoregression Methods

  • Conference paper
  • First Online:
RoboCup 2021: Robot World Cup XXIV (RoboCup 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13132))

Included in the following conference series:

Abstract

In this paper, we propose a method for predicting the path of the ball on the soccer field for the humanoid robots. A cost-function-based k-nearest neighbor regression method is first proposed to account for the part of the prediction which is based on previously observed data. Next, the autoregression method is utilized in order to carry out the prediction based on the current ball path. Finally, these two methods are combined to form the final prediction model. Moreover, two different schemes are introduced based upon the proposed model: fixed and adaptive schemes. In fixed scheme, the prediction is made once during the initial steps of the motion and is used throughout the whole ball movement. However, in adaptive scheme, autoregression method coefficients are updated in fixed predefined steps during the motion. This is beneficial to robustify the prediction against an externally applied disturbance on the ball path. Our proposed method is tested by simulation and practical implementation and the results demonstrate a high precision rate.

Y. Mirmohammad, S. Khorsandi and M. N. Shahsavari—Authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayhan, S., Samet, H.: Aircraft trajectory prediction made easy with predictive analytics. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 21–30 (2016)

    Google Scholar 

  2. Duca, A.L., Bacciu, C., Marchetti, A.: A \(K\)-nearest neighbor classifier for ship route prediction. In: OCEANS 2017-Aberdeen, pp. 1–6 (2017)

    Google Scholar 

  3. Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: Trafficpredict: trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6120–6127 (2019)

    Google Scholar 

  4. Baltes, J., Tu, K.-Y., Sadeghnejad, S., Anderson, J.: HuroCup: competition for multi-event humanoid robot athletes. Knowl. Eng. Rev. 32, 1–14 (2017)

    Article  Google Scholar 

  5. Lin, H.-I., Yu, Z., Huang, Y.-C.: Ball tracking and trajectory prediction for table-tennis robots. Sensors 20(2), 333 (2020)

    Article  Google Scholar 

  6. Cong, V.D., Hanh, L.D., Phuong, L.H.: Real-time measurement and prediction of ball trajectory for ping-pong robot. In: 2020 5th International Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam, pp. 9–14 (2020). https://doi.org/10.1109/GTSD50082.2020.9303148

  7. Gerndt, R., Seifert, D., Baltes, J.H., Sadeghnejad, S., Behnke, S.: Humanoid robots in soccer: robots versus humans in RoboCup 2050. IEEE Robot. Autom. Mag. 22, 147–154 (2015)

    Article  Google Scholar 

  8. Shangari, T.A., Shamshirdar, F., Azari, B., Heydari, M., Sadeghnejad, S., Baltes, J.: Real-time ball detection and following based on a hybrid vision system with application to robot soccer field. In: Kim, J.-H., Karray, F., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 4. AISC, vol. 447, pp. 521–527. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-31293-4_42

    Chapter  Google Scholar 

  9. Lengagneua, S., Fraisse, P., Ramdani, N.: Planning and fast re-planning of safe motions for humanoid robots: application to a kicking motion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 441–446 (2009)

    Google Scholar 

  10. Gomez, M., Kim, Y., Matson, E.T.: Iterative learning system to intercept a ball for humanoid soccer player. In: 6th International Conference on Automation, Robotics and Applications (ICARA), pp. 507–512 (2015)

    Google Scholar 

  11. Zhao, Y., Xiong, R., Zhang, Y.: Model based motion state estimation and trajectory prediction of spinning ball for ping-pong robots using expectation-maximization algorithm. J. Intell. Robot. Syst. 87, 407–423 (2017)

    Article  Google Scholar 

  12. Zhang, Y., Xiong, R., Zhao, Y., Chu, J.: An adaptive trajectory prediction method for ping-pong robots. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012. LNCS (LNAI), vol. 7508, pp. 448–459. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33503-7_44

    Chapter  Google Scholar 

  13. Liu, Y., Liu, L.: Accurate real-time ball path estimation with onboard stereo camera system for humanoid ping-pong robot. Robot. Auton. Syst. 101, 34–44 (2018)

    Article  Google Scholar 

  14. Hattori, M., et al.: Fast tennis swing motion by ball trajectory prediction and joint trajectory modification in standalone humanoid robot real-time system (2020)

    Google Scholar 

  15. Carneiro, D., Silva, F., Georgieva, P.: The role of early anticipations for human-robot ball catching. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 10–16 (2018)

    Google Scholar 

  16. LaViola, J.J.: Double exponential smoothing: an alternative to Kalman filter-based predictive tracking. In: Proceedings of the Workshop on Virtual Environments, pp. 199–206 (2003)

    Google Scholar 

  17. Stolzenburg, F., Obst, O., Murray, J.: Qualitative velocity and ball interception. In: Jarke, M., Lakemeyer, G., Koehler, J. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 283–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45751-8_19

    Chapter  Google Scholar 

  18. Janati, F., Abdollahi, F., Ghidary, S.S., Jannatifar, M., Baltes, J., Sadeghnejad, S.: Multi-robot task allocation using clustering method. In: Kim, J.-H., Karray, F., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 4. AISC, vol. 447, pp. 233–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-31293-4_19

    Chapter  Google Scholar 

  19. Baltes, J., Bagot, J., Sadeghnejad, S., Anderson, J., Hsu, C.-H.: Full-body motion planning for humanoid robots using rapidly exploring random trees. KI - Künstliche Intelligenz 30(3), 245–255 (2016)

    Article  Google Scholar 

  20. Remus, W., O’Connor, M.: Neural networks for time-series forecasting. In: Armstrong, J.S. (ed.) Principles of Forecasting. ISOR, vol. 30, pp. 245–256. Springer, Boston (2001). https://doi.org/10.1007/978-0-306-47630-3_12

    Chapter  Google Scholar 

  21. Kolarik, T., Rudorfer, G.: Time series forecasting using neural networks. In: ACM SIGAPL APL Quote Quad, pp. 86–94 (1994)

    Google Scholar 

  22. Gheyas, I.A., Smith, L.S.: A neural network approach to time series forecasting. In: Proceedings of the World Congress on Engineering, pp. 1–3 (2009)

    Google Scholar 

  23. Zhao, Y., Yang, R., Chevalier, G., Shah, R.C., Romijnders, R.: Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction. Optik 158, 266–272 (2018)

    Article  Google Scholar 

  24. Mironov, K., Pongratz, M.: Applying neural networks for prediction of flying objects trajectory. Newsl. UGATU 17(6), 28–32 (2013)

    Google Scholar 

  25. Mironov, K., Vladimirova, I., Pongratz, M.: Processing and forecasting the trajectory of a thrown object measured by the stereo vision system. IFAC-PapersOnLine 48, 28–35 (2015)

    Article  Google Scholar 

  26. Mironov, K., Pongratz, M.: Fast kNN-based prediction for the trajectory of a thrown body. In: 24th Mediterranean Conference on Control and Automation (MED), pp. 512–517 (2016)

    Google Scholar 

  27. Yazdankhoo, B., Shahsavari, M.N., Sadeghnejad, S., Baltes, J.: Prediction of a ball trajectory for the humanoid robots: a friction-based study. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 387–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_32

    Chapter  Google Scholar 

  28. Klanke, S., Ritter, H.: Variants of unsupervised kernel regression: general cost functions. Neurocomputing 70(7–9), 1289–1303 (2007)

    Article  Google Scholar 

  29. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision: the shared vision system for the RoboCup small size league. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 425–436. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11876-0_37

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroush Sadeghnejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mirmohammad, Y., Khorsandi, S., Shahsavari, M.N., Yazdankhoo, B., Sadeghnejad, S. (2022). Ball Path Prediction for Humanoid Robots: Combination of k-NN Regression and Autoregression Methods. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds) RoboCup 2021: Robot World Cup XXIV. RoboCup 2021. Lecture Notes in Computer Science(), vol 13132. Springer, Cham. https://doi.org/10.1007/978-3-030-98682-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98682-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98681-0

  • Online ISBN: 978-3-030-98682-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics