Skip to main content

A Telemetry-Based PI Tuning Strategy for Low-Level Control of an Omnidirectional Mobile Robot

  • Conference paper
  • First Online:
RoboCup 2021: Robot World Cup XXIV (RoboCup 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13132))

Included in the following conference series:

Abstract

Mobile robot control requires precision and accuracy to react to unpredictable situations. However, it is non-trivial to design a low-level controller for each wheel that combines fast response and stability in the presence of disturbances. The Proportional-Integral (PI) controller algorithm is the most used technique for DC motors; however, tuning these controllers can become a time-consuming task depending on the number of robots and tuning methodology. We propose a novel telemetry-based strategy to find suitable PI controller parameters more quickly using accurate motor models of the omnidirectional mobile robots obtained from an on-site data sampling mechanism. We evaluate our approach on an omnidirectional robot designed within the RoboCup Small Size League (SSL) competition rules. The results compare the proposed method with a based on Quantitative Feedback Theory (QFT) approach. Our strategy improved on average the robot’s performance by \(17.95\%\) when using Integral Absolute Error (IAE) and by \(12.75\%\) when using Integral Squared Error (ISE) criteria.

Supported by Centro de Informática (CIn - UFPE), Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and RobôCIn Robotics Team.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Mamun, M.A., Nasir, M.T., Khayyat, A.: Embedded system for motion control of an omnidirectional mobile robot. IEEE Access 6, 6722–6739 (2018)

    Article  Google Scholar 

  2. Araújo, V.H.S.S.: Uma abordagem para tuning de um controlador PI para motores brushless DC: um estudo de caso aplicado ao controle de movimento de um robô omnidirecional. Master’s thesis, Universidade Federal de Pernambuco (2020)

    Google Scholar 

  3. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning, vol. 2. Instrument society of America Research Triangle Park, NC (1995)

    Google Scholar 

  4. Azizi, M.R., Rastegarpanah, A., Stolkin, R.: Motion planning and control of an omnidirectional mobile robot in dynamic environments. Robotics 10(1), 48 (2021)

    Article  Google Scholar 

  5. Braun, M., Rivera, D., Stenman, A., Foslien, W., Hrenya, C.: Multi-level pseudo-random signal design and model-on-demand estimation applied to nonlinear identification of a rtp wafer reactor. In: Proceedings of the 1999 American Control Conference, vol. 3, pp. 1573–1577 (1999)

    Google Scholar 

  6. Comasolivas, R., Quevedo, J., Escobet, T., Escobet, A., Romera, J.: Modeling and robust low level control of an omnidirectional mobile robot. J. Dyn. Syst. Meas. Control 139(4) (2017)

    Google Scholar 

  7. Conceição, A.S., Oliveira, H.P., e Silva, A.S., Oliveira, D., Moreira, A.P.: A nonlinear model predictive control of an omni-directional mobile robot. In: 2007 IEEE International Symposium on Industrial Electronics, pp. 2161–2166. IEEE (2007)

    Google Scholar 

  8. Haidekker, M.A.: Linear Feedback Controls: The Esentials. Elsevier, Amsterdam (2020)

    Google Scholar 

  9. Han, J., Wang, P., Yang, X.: Tuning of pid controller based on fruit fly optimization algorithm. In: 2012 IEEE International Conference on Mechatronics and Automation, pp. 409–413. IEEE (2012)

    Google Scholar 

  10. Han, Y., Zhu, Q.: Robust optimal control of omni-directional mobile robot using model predictive control method. In: 2019 Chinese Control Conference (CCC), pp. 4679–4684. IEEE (2019)

    Google Scholar 

  11. Hashemi, E., Jadidi, M.G., Jadidi, N.G.: Model-based pi-fuzzy control of four-wheeled omni-directional mobile robots. Robot. Auton. Syst. 59(11), 930–942 (2011)

    Article  Google Scholar 

  12. Hat, M., et al.: Model based design of pid controller for bldc motor with implementation of embedded arduino mega controller. J. Eng. Appl. Sci. 10, 8588–8594 (2015)

    Google Scholar 

  13. Hussin, M.S., Azuwir, M.N., Zaiazmin, Y.N.: Modeling and validation of brushless dc motor. In: 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, pp. 1–4 (2011)

    Google Scholar 

  14. Ibrahim, M.A., Mahmood, A.K., Sultan, N.S.: Optimal pid controller of a brushless dc motor using genetic algorithm. Int. J. Power Electron. Drive Syst. 2088, 8694 (2019)

    Google Scholar 

  15. Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for cyber-physical systems. In: 2011 7th International Wireless Communications and Mobile Computing Conference, pp. 1666–1671 (2011)

    Google Scholar 

  16. Jianbin, W., Jianping, C.: An adaptive sliding mode controller for four-wheeled omnidirectional mobile robot with input constraints. In: 2019 Chinese Control And Decision Conference (CCDC), pp. 5591–5596. IEEE (2019)

    Google Scholar 

  17. Keesman, K.J.: System Identification: An Introduction. Springer Science & Business Media, Heidelberg (2011)

    Google Scholar 

  18. Ljung, L.: System Identification Toolbox: User’s Guide, 4th edn. MathWorks, Natick (2012)

    Google Scholar 

  19. Nise, N.S.: Control Systems Engineering. John Wiley & Sons, Hoboken (2020)

    Google Scholar 

  20. Sahputro, S.D., Fadilah, F., Wicaksono, N.A., Yusivar, F.: Design and implementation of adaptive pid controller for speed control of dc motor. In: 2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering, pp. 179–183 (2017)

    Google Scholar 

  21. Tang, W.J., Liu, Z.T., Wang, Q.: Dc motor speed control based on system identification and pid auto tuning. In: 2017 36th Chinese Control Conference (CCC), pp. 6420–6423. IEEE (2017)

    Google Scholar 

  22. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision: the shared vision system for the robocup small size league. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 425–436. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11876-0_37

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Araújo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Araújo, V., Martins, F., Fernandes, R., Barros, E. (2022). A Telemetry-Based PI Tuning Strategy for Low-Level Control of an Omnidirectional Mobile Robot. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds) RoboCup 2021: Robot World Cup XXIV. RoboCup 2021. Lecture Notes in Computer Science(), vol 13132. Springer, Cham. https://doi.org/10.1007/978-3-030-98682-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98682-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98681-0

  • Online ISBN: 978-3-030-98682-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics