Abstract
We present a dataset specifically designed to be used as a benchmark to compare vision systems in the RoboCup Humanoid Soccer domain. The dataset is composed of a collection of images taken in various real-world locations as well as a collection of simulated images. It enables comparing vision approaches with a meaningful and expressive metric. The contributions of this paper consist of providing a comprehensive and annotated dataset, an overview of the recent approaches to vision in RoboCup, methods to generate vision training data in a simulated environment, and an approach to increase the variety of a dataset by automatically selecting a diverse set of images from a larger pool. Additionally, we provide a baseline of YOLOv4 and YOLOv4-tiny on this dataset.
All authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://humanoid.robocup.org/hl-2021/v-hsc/ (last accessed: 2021/06/14)
- 2.
https://github.com/noctrog/conv-vae (last accessed: 2021/06/14)
References
Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning approach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_33
Asada, M., von Stryk, O.: Scientific and technological challenges in robocup. Ann. Rev. Control Robot. Auton. Syst. 3, 441–471 (2020)
Barry, D., Shah, M., Keijsers, M., Khan, H., Hopman, B.: xYOLO: a model for real-time object detection in humanoid soccer on low-end hardware. In: International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2019)
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Cruz, N., Leiva, F., Ruiz-del-Solar, J.: Deep learning applied to humanoid soccer robotics: playing without using any color information. Auton. Robot. 45(3), 335–350 (2021). https://doi.org/10.1007/s10514-021-09966-9
Cruz, N., Lobos-Tsunekawa, K., Ruiz-del-Solar, J.: Using convolutional neural networks in robots with limited computational resources: detecting NAO robots while playing soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 19–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1_2
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
van Dijk, S.G., Scheunemann, M.M.: Deep learning for semantic segmentation on minimal hardware. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 349–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_29
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4
Farazi, H., Behnke, S.: Real-time visual tracking and identification for a team of homogeneous humanoid robots. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 230–242. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_19
Farazi, H., et al.: NimbRo robots winning RoboCup 2018 humanoid AdultSize soccer competitions. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 436–449. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_36
Felbinger, G.C., Göttsch, P., Loth, P., Peters, L., Wege, F.: Designing convolutional neural networks using a genetic approach for ball detection. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 150–161. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_12
Fiedler, N., Bestmann, M., Hendrich, N.: ImageTagger: an open source online platform for collaborative image labeling. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 162–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_13
Fiedler, N., Brandt, H., Gutsche, J., Vahl, F., Hagge, J., Bestmann, M.: An open source vision pipeline approach for RoboCup humanoid soccer. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 376–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_29
Gabel, A., Heuer, T., Schiering, I., Gerndt, R.: Jetson, where is the ball? Using neural networks for ball detection at RoboCup 2017. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 181–192. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_15
Gondry, L., et al.: Rhoban football club: RoboCup humanoid KidSize 2019 champion team paper. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 491–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_40
Hess, T., Mundt, M., Weis, T., Ramesh, V.: Large-scale stochastic scene generation and semantic annotation for deep convolutional neural network training in the RoboCup SPL. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 33–44. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1_3
Javadi, M., Azar, S.M., Azami, S., Ghidary, S.S., Sadeghnejad, S., Baltes, J.: Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 338–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1_28
Kukleva, A., Khan, M.A., Farazi, H., Behnke, S.: Utilizing temporal information in deep convolutional network for efficient soccer ball detection and tracking. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 112–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_9
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Menashe, J., et al.: Fast and precise black and white ball detection for RoboCup soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 45–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1_4
Michel, O.: Cyberbotics ltd. webots\(^{{\rm TM}}\): professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)
Poppinga, B., Laue, T.: JET-Net: real-time object detection for mobile robots. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 227–240. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_18
Schnekenburger, F., Scharffenberg, M., Wülker, M., Hochberg, U., Dorer, K.: Detection and localization of features on a soccer field with feedforward fully convolutional neural networks (FCNN) for the adult-size humanoid robot sweaty. In: Proceedings of the 12th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots, Birmingham. Sn (2017)
Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for Robocup soccer using convolutional neural networks. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 19–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_2
Speck, D., Bestmann, M., Barros, P.: Towards real-time ball localization using CNNs. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 337–348. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_28
Szemenyei, M., Estivill-Castro, V.: Real-time scene understanding using deep neural networks for RoboCup SPL. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 96–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_8
Szemenyei, M., Estivill-Castro, V.: ROBO: robust, fully neural object detection for robot soccer. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 309–322. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_24
Szemenyei, M., Estivill-Castro, V.: Fully neural object detection solutions for robot soccer. Neural Comput. Appl. 1–14 (2021). https://doi.org/10.1007/s00521-021-05972-1
Teimouri, M., Delavaran, M.H., Rezaei, M.: A real-time ball detection approach using convolutional neural networks. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 323–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_25
Tsipras, D., Santurkar, S., Engstrom, L., Ilyas, A., Madry, A.: From ImageNet to image classification: contextualizing progress on benchmarks. In: International Conference on Machine Learning, pp. 9625–9635. PMLR (2020)
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)
Acknowledgments
Thanks to all individuals and teams that provided data and labels or helped to develop and host the ImageTagger.
This research was partially funded by the Ministry of Science, Research and Equalities of Hamburg as well as the German Research Foundation (DFG) and the National Science Foundation of China (NSFC) in project Crossmodal Learning, TRR-169.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Bestmann, M. et al. (2022). TORSO-21 Dataset: Typical Objects in RoboCup Soccer 2021. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds) RoboCup 2021: Robot World Cup XXIV. RoboCup 2021. Lecture Notes in Computer Science(), vol 13132. Springer, Cham. https://doi.org/10.1007/978-3-030-98682-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-98682-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98681-0
Online ISBN: 978-3-030-98682-7
eBook Packages: Computer ScienceComputer Science (R0)