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Preface

The present book Modeling, Optimization and Intelligent Control Techniques in
Renewable Energy Systems—An Optimal Integration Of Renewable Energy
Resources Into Grid publishes a good work in the field of renewable energy and
control, presented in an informal and high-quality manner. The book’s content is
fascinating and appealing because it covers a wide range of technologies and
control techniques, such as advanced robust control, intelligent control methods,
wind farm, fractional-order controllers, algorithm optimizations, PV-CSP
hybridization, thermal energy storage, dispatching strategy, modeling,
mono-objective optimization and multi-objective optimization.

The goal is to include the theory, applications and perspectives on current and
future advancements in renewable energy control and optimization, variable con-
verters and related domains, as well as the paradigms and methodologies that
underpin them.

The chapters in this book are written for graduate students, researchers, edu-
cators, engineers and scientists who need to know about mathematical analysis
theories, methods and applications.

This book provides two parts. It has a total of 11 chapters, which are organized
as follows: the first part focuses on applications of control theory on wind turbine
and comprises six chapters.

The chapter Introduction to Power System Stability and Wind Energy
Conversion System discusses the power system stability and the identification of the
many forms and causes of instabilities in the power system such as voltage and
frequency instability, as well as the frequency control types and the active power
management capability constraints. The description of the grid code requirements
for integration of wind energy conversion system into grid will be presented.

The chapter Description and Modeling of Wind Energy Conversion System
presents the modeling of the different elements of the variable speed wind power
system based on a squirrel cage induction generator, as well as modeling of grid,
filters, transformer and transmission line. The infinite grid model, dynamic grid
model, RL filter model and LCL filter model are considered. These models are
developed in the (d, q) reference frame, using the Park transformation.
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The chapter Power Quality Improvement of Wind Energy Conversion System
Using a Fuzzy Nonlinear Controller proposes a fuzzy sliding mode control
(Fuzzy-SMC) using a smooth function based on fuzzy logic. The proposed control
algorithm is used to control the wind energy conversion system connected into the
grid through a LCL filter with passive damping and to reduce the harmonics due to
the chattering phenomenon. The proposed control system is validated by the
numerical simulation and also validated experimentally using a test bench based on
DSPace Board and three-phase inverter.

The chapter Supervisory and Power Control Systems of a WF for Participating
in Auxiliary Services investigates a fuzzy PIFPI controller for reactive power and
LVRT control in an uncompensated power system. The supervision system based
on proportional distribution algorithm, according to three operating modes (MPPT
control mode, PQ control mode and fault control mode) is developed to ensure the
optimal operation of grid-connected wind farm based on the squirrel cage induction
generator.

The chapter LVRT Control Using an Optimized Fractional Order Fuzzy
Controller of a Wind Farm proposes the fractional order fuzzy controller
(FOPI-Fuzzy-FOPI) to improve the voltage and reactive power responses and
studies the problem of voltage drop in an uncompensated power system. The
supervisory system ensures the cooperation between the different parts of the wind
farm system and the optimal interaction between the wind turbines.

The chapter Primary Frequency Control for Wind Farm Using a Novel PI Fuzzy
PI Controller addresses the participation of the wind farm in primary frequency
control using inertial power reserve supported by pitch control strategy. The pro-
posed PI-Fuzzy-PI (PIFPI) controller for primary frequency control ensures the
balance between power demand and power production, provides high performance
and satisfies the grid code requirements. The WF of 90 MW capacity is aggregated
into a multi-machine model. It consists of 3 equivalent wind turbines based on
squirrel cage induction generator and is connected to two grid areas.

The second part of this book includes five chapters and emphasis on the mod-
eling and optimization of hybrid photovoltaic (PV)-concentrated solar power
(CSP) systems coupled to a thermal energy storage system.

The chapter Hybridization PV-CSP: An Overview investigates an overview of
hybrid photovoltaic (PV)-concentrated solar power (CSP) system. The challenges
that can be addressed based on the world energy context are presented. In this
context, renewable energy sources are presented as an ecological and economical
alternative to fossil energies for the production of electricity. Then, the issues and
proposed solution related to the grid integration of renewable energy sources are
discussed. Finally, a survey of the literature on hybridization PV-CSP is presented.

The chapter Detailed Modeling of Hybrid PV-CSP Plant focuses on modeling of
hybrid PV-CSP systems. Firstly, the mathematical model is presented to calculate
the hourly electrical power produced by the PV plant and the hourly electrical
power generated by the solar field of the CSP plant based on parabolic trough
technology. Finally, a dispatch strategy is proposed in order to manage the power
flows in the hybrid PV-CSP system to supply the requested load.
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The chapter Techno-economic Parametric Study of Hybrid PV-CSP Power
proposes a parametric study of three main solar plants (PV, CSP and hybrid
PV-CSP). This study focuses on evaluating the influence of decision parameters
(PV orientation angles, solar multiple (SM), thermal energy storage capacity
(TES) and fraction of hybridization) on solar power plants, by calculating the
electrical annual energy and electricity cost. Several simulations have been estab-
lished and discussed in detail to evaluate the optimal configuration of the PV-CSP
in comparison with PV plant and CSP plant.

The chapter Optimal PV-CSP System Sizing Using Mono Objective Optimisation
addresses a mono objective optimization model to find the optimum size of hybrid
PV-CSP plant so as to meet the requested load with possible minimum electricity
cost and highest efficiency. Hybrid particle swarm optimization (PSO)-Cuckoo
search (CS) algorithm have been used through this model for determining the
optimum size of the PV-CSP system, and the minimum electricity cost at a pre-
determined level of capacity factor value, in order to satisfy two types of requested
load.

The chapter The Multi-objective Optimization of PV-CSP Hybrid System with
Electric Heater presents a multi-objective optimization approach of the hybrid
PV-CSP system coupled to an electric heater (EH), which is used to convert the
excess electrical energy from the PV plant into thermal energy that will be stored
for later use. Therefore, a model of the PV-CSP-EH plant was established and a
multi-objective optimization using the genetic algorithm was adopted. The purpose
of the optimization is to minimize the electricity cost and dumped energy and to
maximize the capacity factor simultaneously. The Final optimal configurations are
obtained from the Pareto front by applying a decision-making method.
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