Skip to main content

A Process Reverse Engineering Approach Using Process and Observation Ontology and Probabilistic Relational Models: Application to Processing of Bio-composites for Food Packaging

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2021)

Abstract

Designing new processes for bio-based and biodegradable food packaging is an environmental and economic challenge. Due to the multiplicity of the parameters, such an issue requires an approach that proposes both (1) to integrate heterogeneous data sources and (2) to allow causal reasoning. In this article, we present POND (Process and observation ONtology Discovery), a workflow dedicated to answering expert queries on domains modeled by the Process and Observation Ontology (PO\(^2\)). The presentation is illustrated with a real-world application on bio-composites for food packaging to solve a reverse engineering problem, using a novel dataset composed of data from different projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/TR/owl2-overview/.

  2. 2.

    http://agroportal.lirmm.fr/ontologies/PO2.

  3. 3.

    https://creativecommons.org/licenses/by/4.0/.

  4. 4.

    We use the classical statistical method Greedy Hill Climbing with a BIC Score.

  5. 5.

    For the rest of the article, all attributes represented in the model are bolded.

References

  1. Ben Messaoud, M., Leray, P., Ben Amor, N.: Semcado: a serendipitous strategy for learning causal bayesian networks using ontologies. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp. 182–193 (2011)

    Google Scholar 

  2. Bucci, G., Sandrucci, V., Vicario, E.: Ontologies and bayesian networks in medical diagnosis. HICSS, pp. 1–8 (2011)

    Google Scholar 

  3. Buche, P., Dibie-Barthelemy, J., Ibanescu, L.L., Soler, L.: Fuzzy web data tables integration guided by a termino-ontological resource. IEEE Trans. Knowl. Data Eng. 25(4), 805–819 (2013)

    Google Scholar 

  4. Castelletti, F., Consonni, G.: Discovering causal structures in bayesian gaussian directed acyclic graph models. J. Royal Stat. Soc. Series A Royal Stat. Soc. 183, 1727–1745 (2020)

    Google Scholar 

  5. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    Google Scholar 

  6. David, G., et al.: Using life cycle assessment to quantify the environmental benefit of upcycling vine shoots as fillers in biocomposite packaging materials. Int. J. Life Cycle Assess. 26(4), 738–752 (2020). https://doi.org/10.1007/s11367-020-01824-7

  7. De Campos, C.P., Ji, Q.: Improving bayesian network parameter learning using constraints. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  8. De Campos, C., Zhi, Z., Ji, Q.: Structure learning of bayesian networks using constraints. In: ICML, pp. 113–120 (2009)

    Google Scholar 

  9. Dibie, J., Dervaux, S., Doriot, E., Ibanescu, L., Pénicaud, C.: [MS]\({}^{2}\)O - A multi-scale and multi-step ontology for transformation processes: application to micro-organisms. In: ICSS, pp. 163–176 (2016)

    Google Scholar 

  10. Ding, Z., Peng, Y., Pan, R.: BayesOWL: uncertainty modeling in semantic web ontologies. In: Ma, Z. (eds.) Soft Computing in Ontologies and Semantic Web. Studies in Fuzziness and Soft Computing, vol. 204. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-33473-6_1

  11. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: SEMANTiCS (Posters, Demos, SuCCESS) (2016)

    Google Scholar 

  12. Fabre, C., Buche, P., Rouau, X., Mayer-Laigle, C.: Milling itineraries dataset for a collection of crop and wood by-products and granulometric properties of the resulting powders. Data in Brief 33 (2020)

    Google Scholar 

  13. Fenz, S.: Exploiting experts’ knowledge for structure learning of bayesian networks. Data Knowl. Eng. 73, 73–88 (2012)

    Google Scholar 

  14. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: IJCAI, p. 1300–1307. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  15. Glymour, C., Zhang, K., Spirtes, P.: Review of causal discovery methods based on graphical models. Front. Gene. 10, 524 (2019)

    Google Scholar 

  16. Hauser, A., Bühlmann, P.: Two optimal strategies for active learning of causal models from interventional data. Int. J. Approximate Reason, pp. 926–939 (2014)

    Google Scholar 

  17. Ibanescu, L., Dibie, J., Dervaux, S., Guichard, E., Raad, J.: Po2- a process and observation ontology in food science. application to dairy gels. Metadata Seman. Res., 155–165 (2016)

    Google Scholar 

  18. Madigan, D., Andersson, S.A., Perlman, M.D., Volinsky, C.T.: Bayesian model averaging and model selection for markov equivalence classes of acyclic digraphs. Commun. Stat. Theory Methods 25(11), 2493–2519 (1996)

    Google Scholar 

  19. Mohammed, A.-W., Xu, Y., Liu, M.: Knowledge-oriented semantics modelling towards uncertainty reasoning. SpringerPlus 5(1), 1–27 (2016). https://doi.org/10.1186/s40064-016-2331-1

    Article  Google Scholar 

  20. Munch, M., Dibie, J., Wuillemin, P., Manfredotti, C.E.: Towards interactive causal relation discovery driven by an ontology. In: FLAIRS, pp. 504–508 (2019)

    Google Scholar 

  21. Munch, M., Wuillemin, P.-H., Manfredotti, C., Dibie, J., Dervaux, S.: Learning probabilistic relational models using an ontology of transformation processes. In: Panetto, H., Debruyne, C., Gaaloul, W., Papazoglou, M., Paschke, A., Ardagna, C.A., Meersman, R. (eds.) OTM 2017. LNCS, vol. 10574, pp. 198–215. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69459-7_14

  22. Parviainen, P., Koivisto, M.: Finding optimal bayesian networks using precedence constraints. J. Mach. Learn. Res. 14, 1387–1415 (2013)

    Google Scholar 

  23. Pearl, J.: Causality: Models, 2nd edn. Reasoning and Inference. Cambridge University Press, USA (2009)

    Book  Google Scholar 

  24. Shanmugam, K., Kocaoglu, M., Dimakis, A.G., Vishwanath, S.: Learning causal graphs with small interventions. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 28. Curran Associates, Inc. (2015)

    Google Scholar 

  25. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT press, 2nd edn. (2000)

    Google Scholar 

  26. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The neon methodology for ontology engineering. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 9–34. Springer (2012) https://doi.org/10.1007/978-3-642-24794-1_2

  27. Verny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from multivariate information in genomic data. PLOS Comput. Biol. 13 (2017)

    Google Scholar 

  28. Zhang, S., Sun, Y., Peng, Y., Wang, X.: Bayesowl: a prototype system for uncertainty in semantic web. ICAI 2, 678–684 (2009)

    Google Scholar 

Download references

Acknowledgement

We would like to thank Claire Mayer (PhyProDiv Team, INRAE IATE) who provided data for the biomass discovery aspect. Our work has been partially financed by the French national research agency ANR in the framework of D2KAB (ANR-18-CE23-0017) and DataSusFood (ANR-19-DATA-0016) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélanie Münch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Münch, M., Buche, P., Manfredotti, C., Wuillemin, PH., Angellier-Coussy, H. (2022). A Process Reverse Engineering Approach Using Process and Observation Ontology and Probabilistic Relational Models: Application to Processing of Bio-composites for Food Packaging. In: Garoufallou, E., Ovalle-Perandones, MA., Vlachidis, A. (eds) Metadata and Semantic Research. MTSR 2021. Communications in Computer and Information Science, vol 1537. Springer, Cham. https://doi.org/10.1007/978-3-030-98876-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98876-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98875-3

  • Online ISBN: 978-3-030-98876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics